IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.12215.html
   My bibliography  Save this paper

Partial identification via conditional linear programs: estimation and policy learning

Author

Listed:
  • Eli Ben-Michael

Abstract

Many important quantities of interest are only partially identified from observable data: the data can limit them to a set of plausible values, but not uniquely determine them. This paper develops a unified framework for covariate-assisted estimation, inference, and decision making in partial identification problems where the parameter of interest satisfies a series of linear constraints, conditional on covariates. In such settings, bounds on the parameter can be written as expectations of solutions to conditional linear programs that optimize a linear function subject to linear constraints, where both the objective function and the constraints may depend on covariates and need to be estimated from data. Examples include estimands involving the joint distributions of potential outcomes, policy learning with inequality-aware value functions, and instrumental variable settings. We propose two de-biased estimators for bounds defined by conditional linear programs. The first directly solves the conditional linear programs with plugin estimates and uses output from standard LP solvers to de-bias the plugin estimate, avoiding the need for computationally demanding vertex enumeration of all possible solutions for symbolic bounds. The second uses entropic regularization to create smooth approximations to the conditional linear programs, trading a small amount of approximation error for improved estimation and computational efficiency. We establish conditions for asymptotic normality of both estimators, show that both estimators are robust to first-order errors in estimating the conditional constraints and objectives, and construct Wald-type confidence intervals for the partially identified parameters. These results also extend to policy learning problems where the value of a decision policy is only partially identified. We apply our methods to a study on the effects of Medicaid enrollment.

Suggested Citation

  • Eli Ben-Michael, 2025. "Partial identification via conditional linear programs: estimation and policy learning," Papers 2506.12215, arXiv.org.
  • Handle: RePEc:arx:papers:2506.12215
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.12215
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.12215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.