IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.12093.html
   My bibliography  Save this paper

Intelligent Automation for FDI Facilitation: Optimizing Tariff Exemption Processes with OCR And Large Language Models

Author

Listed:
  • Muhammad Sukri Bin Ramli

Abstract

Tariff exemptions are fundamental to attracting Foreign Direct Investment (FDI) into the manufacturing sector, though the associated administrative processes present areas for optimization for both investing entities and the national tax authority. This paper proposes a conceptual framework to empower tax administration by leveraging a synergistic integration of Optical Character Recognition (OCR) and Large Language Model (LLM) technologies. The proposed system is designed to first utilize OCR for intelligent digitization, precisely extracting data from diverse application documents and key regulatory texts such as tariff orders. Subsequently, the LLM would enhance the capabilities of administrative officers by automating the critical and time-intensive task of verifying submitted HS Tariff Codes for machinery, equipment, and raw materials against official exemption lists. By enhancing the speed and precision of these initial assessments, this AI-driven approach systematically reduces potential for non-alignment and non-optimized exemption utilization, thereby streamlining the investment journey for FDI companies. For the national administration, the benefits include a significant boost in operational capacity, reduced administrative load, and a strengthened control environment, ultimately improving the ease of doing business and solidifying the nation's appeal as a premier destination for high-value manufacturing FDI.

Suggested Citation

  • Muhammad Sukri Bin Ramli, 2025. "Intelligent Automation for FDI Facilitation: Optimizing Tariff Exemption Processes with OCR And Large Language Models," Papers 2506.12093, arXiv.org.
  • Handle: RePEc:arx:papers:2506.12093
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.12093
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.12093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.