IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.00572.html
   My bibliography  Save this paper

Machine-learning Growth at Risk

Author

Listed:
  • Tobias Adrian
  • Hongqi Chen
  • Max-Sebastian Dov`i
  • Ji Hyung Lee

Abstract

We analyse growth vulnerabilities in the US using quantile partial correlation regression, a selection-based machine-learning method that achieves model selection consistency under time series. We find that downside risk is primarily driven by financial, labour-market, and housing variables, with their importance changing over time. Decomposing downside risk into its individual components, we construct sector-specific indices that predict it, while controlling for information from other sectors, thereby isolating the downside risks emanating from each sector.

Suggested Citation

  • Tobias Adrian & Hongqi Chen & Max-Sebastian Dov`i & Ji Hyung Lee, 2025. "Machine-learning Growth at Risk," Papers 2506.00572, arXiv.org.
  • Handle: RePEc:arx:papers:2506.00572
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.00572
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.00572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.