IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.13324.html
   My bibliography  Save this paper

From What Ifs to Insights: Counterfactuals in Causal Inference vs. Explainable AI

Author

Listed:
  • Galit Shmueli
  • David Martens
  • Jaewon Yoo
  • Travis Greene

Abstract

Counterfactuals play a pivotal role in the two distinct data science fields of causal inference (CI) and explainable artificial intelligence (XAI). While the core idea behind counterfactuals remains the same in both fields--the examination of what would have happened under different circumstances--there are key differences in how they are used and interpreted. We introduce a formal definition that encompasses the multi-faceted concept of the counterfactual in CI and XAI. We then discuss how counterfactuals are used, evaluated, generated, and operationalized in CI vs. XAI, highlighting conceptual and practical differences. By comparing and contrasting the two, we hope to identify opportunities for cross-fertilization across CI and XAI.

Suggested Citation

  • Galit Shmueli & David Martens & Jaewon Yoo & Travis Greene, 2025. "From What Ifs to Insights: Counterfactuals in Causal Inference vs. Explainable AI," Papers 2505.13324, arXiv.org.
  • Handle: RePEc:arx:papers:2505.13324
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.13324
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acharya, Avidit & Blackwell, Matthew & Sen, Maya, 2016. "Explaining Causal Findings Without Bias: Detecting and Assessing Direct Effects," American Political Science Review, Cambridge University Press, vol. 110(3), pages 512-529, August.
    2. David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022. "Valid t-Ratio Inference for IV," American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.
    3. Imai, Kosuke & Keele, Luke & Tingley, Dustin & Yamamoto, Teppei, 2011. "Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies," American Political Science Review, Cambridge University Press, vol. 105(4), pages 765-789, November.
    4. Brett R. Gordon & Florian Zettelmeyer & Neha Bhargava & Dan Chapsky, 2019. "A Comparison of Approaches to Advertising Measurement: Evidence from Big Field Experiments at Facebook," Marketing Science, INFORMS, vol. 38(2), pages 193-225, March.
    5. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    6. Kaiquan Xu & Jason Chan & Anindya Ghose & Sang Pil Han, 2017. "Battle of the Channels: The Impact of Tablets on Digital Commerce," Management Science, INFORMS, vol. 63(5), pages 1469-1492, May.
    7. repec:plo:pone00:0083875 is not listed on IDEAS
    8. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    9. Caroline Flammer & Aleksandra Kacperczyk, 2016. "The Impact of Stakeholder Orientation on Innovation: Evidence from a Natural Experiment," Management Science, INFORMS, vol. 62(7), pages 1982-2001, July.
    10. Avi Goldfarb & Catherine Tucker, 2011. "Search Engine Advertising: Channel Substitution When Pricing Ads to Context," Management Science, INFORMS, vol. 57(3), pages 458-470, March.
    11. Jake M. Hofman & Duncan J. Watts & Susan Athey & Filiz Garip & Thomas L. Griffiths & Jon Kleinberg & Helen Margetts & Sendhil Mullainathan & Matthew J. Salganik & Simine Vazire & Alessandro Vespignani, 2021. "Integrating explanation and prediction in computational social science," Nature, Nature, vol. 595(7866), pages 181-188, July.
    12. Caroline Flammer, 2015. "Does Corporate Social Responsibility Lead to Superior Financial Performance? A Regression Discontinuity Approach," Management Science, INFORMS, vol. 61(11), pages 2549-2568, November.
    13. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, June.
    14. Seshadri Tirunillai & Gerard J. Tellis, 2017. "Does Offline TV Advertising Affect Online Chatter? Quasi-Experimental Analysis Using Synthetic Control," Marketing Science, INFORMS, vol. 36(6), pages 862-878, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Arkhangelsky & Vasily Korovkin, 2019. "On Policy Evaluation with Aggregate Time-Series Shocks," Papers 1905.13660, arXiv.org, revised Mar 2024.
    2. Yanbing Wang & Michael S. Delgado & Jin Xu, 2023. "When and where does it pay to be green? – A look into socially responsible investing and the cost of equity capital," International Journal of Corporate Social Responsibility, Springer, vol. 8(1), pages 1-23, December.
    3. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    4. Franck Brulhart & Sandrine Gherra & Bertrand V. Quelin, 2019. "Do Stakeholder Orientation and Environmental Proactivity Impact Firm Profitability?," Journal of Business Ethics, Springer, vol. 158(1), pages 25-46, August.
    5. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    6. Yanwen Wang & Chunhua Wu & Ting Zhu, 2019. "Mobile Hailing Technology and Taxi Driving Behaviors," Marketing Science, INFORMS, vol. 38(5), pages 734-755, September.
    7. Christoph Dworschak, 2024. "Bias mitigation in empirical peace and conflict studies: A short primer on posttreatment variables," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(3), pages 462-476, May.
    8. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    9. Sun, Zeyu & Li, Xiaohui & Xie, Jing & Cheng, C.S., 2023. "How does dividend payout affect corporate social responsibility? A channel analysis," Journal of Financial Stability, Elsevier, vol. 68(C).
    10. Meierrieks, Daniel & Renner, Laura, 2021. "Islamist terrorism and the role of women," Discussion Paper Series 2021-02, University of Freiburg, Wilfried Guth Endowed Chair for Constitutional Political Economy and Competition Policy.
    11. Dodd, Olga & Frijns, Bart & Garel, Alexandre, 2022. "Cultural diversity among directors and corporate social responsibility," International Review of Financial Analysis, Elsevier, vol. 83(C).
    12. Francesca Caselli & Matilde Faralli & Paolo Manasse & Ugo Panizza, 2021. "On the Benefits of Repaying," IMF Working Papers 2021/233, International Monetary Fund.
    13. Goryunov, Alexander & Ageshina, Elena & Lavrentev, Igor & Peretyatko, Polina, 2023. "Estimating the effect of Russia’s development policy in the Far Eastern region: The synthetic control approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 72, pages 58-72.
    14. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    15. Avdic, Daniel & von Hinke, Stephanie, 2021. "Extending alcohol retailers’ opening hours: Evidence from Sweden," European Economic Review, Elsevier, vol. 138(C).
    16. Damon Jones & Ioana Marinescu, 2022. "The Labor Market Impacts of Universal and Permanent Cash Transfers: Evidence from the Alaska Permanent Fund," American Economic Journal: Economic Policy, American Economic Association, vol. 14(2), pages 315-340, May.
    17. Cawley, John & Eddelbuettel, Julia & Cunningham, Scott & Eisenberg, Matthew D. & Mathios, Alan D. & Avery, Rosemary J., 2025. "The role of repugnance in markets: How the Jared Fogle scandal affected patronage of subway," Journal of Economic Behavior & Organization, Elsevier, vol. 229(C).
    18. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    19. Schuessler, Julian, 2024. "Causal analysis with observational data," OSF Preprints wam94, Center for Open Science.
    20. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.13324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.