IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.03445.html
   My bibliography  Save this paper

A stochastic volatility approximation for a tick-by-tick price model with mean-field interaction

Author

Listed:
  • Paolo Dai Pra
  • Paolo Pigato

Abstract

We consider a tick-by-tick model of price formation, in which buy and sell orders are modeled as self-exciting point processes (Hawkes process), similar to the one in [El Euch, Fukasawa, Rosenbaum, The microstructural foundations of leverage effect and rough volatility, Finance and Stochastics, 2018]. We adopt an agent based approach by studying the aggregation of a large number of these point processes, mutually interacting in a mean-field sense. The financial interpretation is that of an asset on which several labeled agents place buy and sell orders following these point processes, influencing the price. The mean-field interaction introduces positive correlations between order volumes coming from different agents that reflect features of real markets such as herd behavior and contagion. When the large scale limit of the aggregated asset price is computed, if parameters are set to a critical value, a singular phenomenon occurs: the aggregated model converges to a stochastic volatility model with leverage effect and faster-than-linear mean reversion of the volatility process. The faster-than-linear mean reversion of the volatility process is supported by econometric evidence, and we have linked it in [Dai Pra, Pigato, Multi-scaling of moments in stochastic volatility models, Stochastic Processes and their Applications, 2015] to the observed multifractal behavior of assets prices and market indices. This seems connected to the Statistical Physics perspective that expects anomalous scaling properties to arise in the critical regime.

Suggested Citation

  • Paolo Dai Pra & Paolo Pigato, 2025. "A stochastic volatility approximation for a tick-by-tick price model with mean-field interaction," Papers 2504.03445, arXiv.org.
  • Handle: RePEc:arx:papers:2504.03445
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.03445
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    2. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    3. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    4. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    5. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    6. Mr. Sunil Sharma & Sushil Bikhchandani, 2000. "Herd Behavior in Financial Markets: A Review," IMF Working Papers 2000/048, International Monetary Fund.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    8. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    9. Cipriani Marco & Guarino Antonio, 2008. "Herd Behavior and Contagion in Financial Markets," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 8(1), pages 1-56, October.
    10. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    11. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    12. Hens, Thorsten & Steude, Sven C., 2009. "The leverage effect without leverage," Finance Research Letters, Elsevier, vol. 6(2), pages 83-94, June.
    13. Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
    14. Ben Hambly & Juozas Vaicenavicius, 2015. "The 3/2 Model As A Stochastic Volatility Approximation For A Large-Basket Price-Weighted Index," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1-25.
    15. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    16. Artur Sepp & Parviz Rakhmonov, 2023. "Log-Normal Stochastic Volatility Model With Quadratic Drift," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 26(08), pages 1-63, December.
    17. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    18. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    19. Alan L. Lewis, 2018. "Exact Solutions for a GBM-type Stochastic Volatility Model having a Stationary Distribution," Papers 1809.08635, arXiv.org, revised May 2019.
    20. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    21. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    22. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    23. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    24. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    25. Bruno Durin & Mathieu Rosenbaum & Gr'egoire Szymanski, 2023. "The two square root laws of market impact and the role of sophisticated market participants," Papers 2311.18283, arXiv.org.
    26. Jan Baldeaux, 2012. "Exact Simulation Of The 3/2 Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1-13.
    27. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    28. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    29. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Dai Pra & Paolo Pigato, 2025. "A Stochastic Volatility Approximation for a Tick-By-Tick Price Model with Mean-Field Interaction," CEIS Research Paper 596, Tor Vergata University, CEIS, revised 08 Apr 2025.
    2. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    3. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    4. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    5. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    6. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.
    7. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    8. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    9. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    10. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    11. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    12. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    14. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    16. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    17. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    18. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    19. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    20. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.03445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.