IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.18283.html
   My bibliography  Save this paper

The two square root laws of market impact and the role of sophisticated market participants

Author

Listed:
  • Bruno Durin
  • Mathieu Rosenbaum
  • Gr'egoire Szymanski

Abstract

The goal of this paper is to disentangle the roles of volume and of participation rate in the price response of the market to a sequence of transactions. To do so, we are inspired the methodology introduced in arXiv:1402.1288, arXiv:1805.07134 where price dynamics are derived from order flow dynamics using no arbitrage assumptions. We extend this approach by taking into account a sophisticated market participant having superior abilities to analyse market dynamics. Our results lead to the recovery of two square root laws: (i) For a given participation rate, during the execution of a metaorder, the market impact evolves in a square root manner with respect to the cumulated traded volume. (ii) For a given executed volume $Q$, the market impact is proportional to $\sqrt{\gamma}$, where $\gamma$ denotes the participation rate, for $\gamma$ large enough. Smaller participation rates induce a more linear dependence of the market impact in the participation rate.

Suggested Citation

  • Bruno Durin & Mathieu Rosenbaum & Gr'egoire Szymanski, 2023. "The two square root laws of market impact and the role of sophisticated market participants," Papers 2311.18283, arXiv.org.
  • Handle: RePEc:arx:papers:2311.18283
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.18283
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Blanc & J. Donier & J.-P. Bouchaud, 2017. "Quadratic Hawkes processes for financial prices," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 171-188, February.
    2. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2021. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1235-1247, August.
    3. Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
    4. V. Filimonov & D. Sornette, 2015. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1293-1314, August.
    5. Giorgia Callegaro & Martino Grasselli & Gilles Paèes, 2021. "Fast Hybrid Schemes for Fractional Riccati Equations (Rough Is Not So Tough)," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 221-254, February.
    6. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying reflexivity in financial markets: towards a prediction of flash crashes," Papers 1201.3572, arXiv.org, revised Apr 2012.
    7. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    8. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying Reflexivity in Financial Markets: Towards a Prediction of Flash Crashes," Swiss Finance Institute Research Paper Series 12-02, Swiss Finance Institute.
    9. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    10. Nataliya Bershova & Dmitry Rakhlin, 2013. "The non-linear market impact of large trades: evidence from buy-side order flow," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1759-1778, November.
    11. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
    12. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    13. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youssef Ouazzani Chahdi & Mathieu Rosenbaum & Gr'egoire Szymanski, 2024. "A theory of passive market impact," Papers 2412.07461, arXiv.org.
    2. Eduardo Abi Jaber & Alessandro Bondi & Nathan De Carvalho & Eyal Neuman & Sturmius Tuschmann, 2025. "Fredholm Approach to Nonlinear Propagator Models," Papers 2503.04323, arXiv.org.
    3. Paolo Dai Pra & Paolo Pigato, 2025. "A Stochastic Volatility Approximation for a Tick-By-Tick Price Model with Mean-Field Interaction," CEIS Research Paper 596, Tor Vergata University, CEIS, revised 08 Apr 2025.
    4. Paolo Dai Pra & Paolo Pigato, 2025. "A stochastic volatility approximation for a tick-by-tick price model with mean-field interaction," Papers 2504.03445, arXiv.org.
    5. Gr'egoire Szymanski & Wei Xu, 2025. "Mean-Field Limits for Nearly Unstable Hawkes Processes," Papers 2501.11648, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youssef Ouazzani Chahdi & Mathieu Rosenbaum & Gr'egoire Szymanski, 2024. "A theory of passive market impact," Papers 2412.07461, arXiv.org.
    2. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    3. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    4. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    5. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Working Papers hal-02998555, HAL.
    6. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    7. Yang, Wensheng & Ma, Jingtang & Cui, Zhenyu, 2025. "A general valuation framework for rough stochastic local volatility models and applications," European Journal of Operational Research, Elsevier, vol. 322(1), pages 307-324.
    8. Kotaro Sakuraba & Wataru Kurebayashi & Masato Hisakado & Shintaro Mori, 2024. "Self-exciting negative binomial distribution process and critical properties of intensity distribution," Evolutionary and Institutional Economics Review, Springer, vol. 21(2), pages 277-299, September.
    9. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    10. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2021. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Post-Print hal-02998555, HAL.
    11. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    12. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    13. Emilio Said, 2022. "Market Impact: Empirical Evidence, Theory and Practice," Working Papers hal-03668669, HAL.
    14. Cebiroglu, Gökhan & Hautsch, Nikolaus & Walsh, Christopher, 2019. "Revisiting the stealth trading hypothesis: Does time-varying liquidity explain the size-effect?," CFS Working Paper Series 625, Center for Financial Studies (CFS).
    15. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
    17. von der Becke Susanne & Sornette Didier, 2019. "An Asset-Based Framework of Credit Creation (applied to the Global Financial Crisis)," Accounting, Economics, and Law: A Convivium, De Gruyter, vol. 9(2), pages 1-21, July.
    18. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    19. Gr'egoire Szymanski & Wei Xu, 2025. "Mean-Field Limits for Nearly Unstable Hawkes Processes," Papers 2501.11648, arXiv.org.
    20. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Jan 2025.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.18283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.