IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.17777.html
   My bibliography  Save this paper

Adaptive Nesterov Accelerated Distributional Deep Hedging for Efficient Volatility Risk Management

Author

Listed:
  • Lei Zhao
  • Lin Cai
  • Wu-Sheng Lu

Abstract

In the field of financial derivatives trading, managing volatility risk is crucial for protecting investment portfolios from market changes. Traditional Vega hedging strategies, which often rely on basic and rule-based models, are hard to adapt well to rapidly changing market conditions. We introduce a new framework for dynamic Vega hedging, the Adaptive Nesterov Accelerated Distributional Deep Hedging (ANADDH), which combines distributional reinforcement learning with a tailored design based on adaptive Nesterov acceleration. This approach improves the learning process in complex financial environments by modeling the hedging efficiency distribution, providing a more accurate and responsive hedging strategy. The design of adaptive Nesterov acceleration refines gradient momentum adjustments, significantly enhancing the stability and speed of convergence of the model. Through empirical analysis and comparisons, our method demonstrates substantial performance gains over existing hedging techniques. Our results confirm that this innovative combination of distributional reinforcement learning with the proposed optimization techniques improves financial risk management and highlights the practical benefits of implementing advanced neural network architectures in the finance sector.

Suggested Citation

  • Lei Zhao & Lin Cai & Wu-Sheng Lu, 2025. "Adaptive Nesterov Accelerated Distributional Deep Hedging for Efficient Volatility Risk Management," Papers 2502.17777, arXiv.org.
  • Handle: RePEc:arx:papers:2502.17777
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.17777
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Jay Cao & Jacky Chen & Soroush Farghadani & John Hull & Zissis Poulos & Zeyu Wang & Jun Yuan, 2022. "Gamma and Vega Hedging Using Deep Distributional Reinforcement Learning," Papers 2205.05614, arXiv.org, revised Jan 2023.
    3. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2017. "Short-Term Market Risks Implied by Weekly Options," Journal of Finance, American Finance Association, vol. 72(3), pages 1335-1386, June.
    4. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    5. Carol Alexander & Arben Imeraj, 2023. "Delta hedging bitcoin options with a smile," Quantitative Finance, Taylor & Francis Journals, vol. 23(5), pages 799-817, May.
    6. Kling, Alexander & Ruez, Frederik & Ruß, Jochen, 2011. "The Impact of Stochastic Volatility on Pricing, Hedging, and Hedge Efficiency of Withdrawal Benefit Guarantees in Variable Annuities," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 511-545, November.
    7. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    3. Takami, Marcelo Yoshio & Tabak, Benjamin Miranda, 2008. "Interest rate option pricing and volatility forecasting: An application to Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 755-763.
    4. Rodriguez, Ricardo J., 2002. "Lognormal option pricing for arbitrary underlying assets: a synthesis," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(3), pages 577-586.
    5. Tabesh, Hamid, 1987. "Hedging price risk to soybean producers with futures and options: a case study," ISU General Staff Papers 1987010108000010306, Iowa State University, Department of Economics.
    6. Sven Rady, 1997. "Option pricing in the presence of natural boundaries and a quadratic diffusion term (*)," Finance and Stochastics, Springer, vol. 1(4), pages 331-344.
    7. Andrew Carver & Matthew Ennis, 2011. "The real options content of oil producer stocks," Applied Financial Economics, Taylor & Francis Journals, vol. 21(4), pages 217-231.
    8. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    9. Richards, Timothy J. & Manfredo, Mark R., 2003. "Infrequent Shocks and Rating Revenue Insurance: A Contingent Claims Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-19, August.
    10. Carey, Alexander, 2006. "Path-conditional forward volatility," MPRA Paper 4964, University Library of Munich, Germany.
    11. Siriopoulos, Costas & Fassas, Athanasios, 2012. "An investor sentiment barometer — Greek Implied Volatility Index (GRIV)," Global Finance Journal, Elsevier, vol. 23(2), pages 77-93.
    12. Dew-Becker, Ian & Giglio, Stefano & Kelly, Bryan, 2021. "Hedging macroeconomic and financial uncertainty and volatility," Journal of Financial Economics, Elsevier, vol. 142(1), pages 23-45.
    13. Anthony Neuberger, 2023. "The Black–Scholes paper: a personal perspective," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(2), pages 713-730, December.
    14. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    15. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    16. Maciej Wysocki & Robert 'Slepaczuk, 2024. "Construction and Hedging of Equity Index Options Portfolios," Papers 2407.13908, arXiv.org.
    17. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2005. "Forecasting Exchange Rate Volatility In The Presence Of Jumps," Working Paper 1187, Economics Department, Queen's University.
    18. Giacomo Morelli & Lea Petrella, 2021. "Option Pricing, Zero Lower Bound, and COVID-19," Risks, MDPI, vol. 9(9), pages 1-13, September.
    19. Calum G. Turvey, 2006. "Managing food industry business and financial risks with commodity-linked credit instruments," Agribusiness, John Wiley & Sons, Ltd., vol. 22(4), pages 523-545.
    20. Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.17777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.