IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.14189.html
   My bibliography  Save this paper

Optimal transmission expansion modestly reduces decarbonization costs of U.S. electricity

Author

Listed:
  • Rangrang Zheng
  • Greg Schivley
  • Matthias Fripp
  • Michael J. Roberts

Abstract

Expanding interregional transmission is widely viewed as essential for integrating clean energy into decarbonized power systems. Using the open-source Switch capacity expansion model with detailed representation of existing U.S. generation and transmission infrastructure, solar, wind, and storage resources, and hourly operations, we evaluate the role of transmission across least-cost, socially optimal, and zero-emissions scenarios for 2050. An optimal nationwide plan would more than triple interregional transmission capacity, yet this reduces the cost of a zero-emissions system by only 7% relative to relying on existing transmission, as storage, solar and wind siting, and nuclear generation serve as close substitutes. Regional cost and rent effects vary, with transmission generally favoring wind and hydrogen resources over solar and batteries. Sensitivity analysis shows diminishing returns: one-fifth of the benefits of full expansion can be achieved with one-twelfth of the added capacity, while cost reductions for batteries and hydrogen provide comparable or greater system savings than transmission. Reconductoring -- quadrupling line capacity at half the cost of new builds achieves nearly all the benefits of unconstrained expansion. These results suggest that while substantial transmission expansion is economically justified, a diverse set of flexibility resources can substitute for large-scale grid build-out, and the relative value of transmission is highly contingent on technological and cost developments.

Suggested Citation

  • Rangrang Zheng & Greg Schivley & Matthias Fripp & Michael J. Roberts, 2024. "Optimal transmission expansion modestly reduces decarbonization costs of U.S. electricity," Papers 2402.14189, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2402.14189
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.14189
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ross Marshall & Ross Baxter, 2002. "Strategic Routeing and Environmental Impact Assessment for Overhead Electrical Transmission Lines," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 45(5), pages 747-764.
    2. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    3. Lucas W. Davis & Catherine Hausman & Nancy L. Rose, 2023. "Transmission Impossible? Prospects for Decarbonizing the US Grid," Journal of Economic Perspectives, American Economic Association, vol. 37(4), pages 155-180, Fall.
    4. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    5. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
    6. Sánchez-Pérez, P.A. & Staadecker, Martin & Szinai, Julia & Kurtz, Sarah & Hidalgo-Gonzalez, Patricia, 2022. "Effect of modeled time horizon on quantifying the need for long-duration storage," Applied Energy, Elsevier, vol. 317(C).
    7. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rangrang Zheng & Greg Schivley & Patricia Hidalgo-Gonzalez & Matthias Fripp & Michael J. Roberts, 2024. "Optimal transmission expansion minimally reduces decarbonization costs of U.S. electricity," Working Papers 2024-2, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    2. Milstein, I. & Tishler, A. & Woo, C.K., 2024. "The effect of PV generation's hourly variations on Israel's solar investment," Energy Economics, Elsevier, vol. 136(C).
    3. Moore, J. & Woo, C.K. & Horii, B. & Price, S. & Olson, A., 2010. "Estimating the option value of a non-firm electricity tariff," Energy, Elsevier, vol. 35(4), pages 1609-1614.
    4. Julia K. Szinai & David Yates & Pedro A. Sánchez-Pérez & Martin Staadecker & Daniel M. Kammen & Andrew D. Jones & Patricia Hidalgo-Gonzalez, 2024. "Climate change and its influence on water systems increases the cost of electricity system decarbonization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. C. K. Woo & K. H. Cao & H. Qi & J. Zarnikau & R. Li, 2024. "Price responsiveness of solar and wind capacity demands," Post-Print hal-04597188, HAL.
    6. Newbery, David M. & Greve, Thomas, 2017. "The strategic robustness of oligopoly electricity market models," Energy Economics, Elsevier, vol. 68(C), pages 124-132.
    7. Moritz Bohland & Sebastian Schwenen, 2020. "Technology Policy and Market Structure: Evidence from the Power Sector," Discussion Papers of DIW Berlin 1856, DIW Berlin, German Institute for Economic Research.
    8. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    9. Fabra, Natalia & Toro, Juan, 2005. "Price wars and collusion in the Spanish electricity market," International Journal of Industrial Organization, Elsevier, vol. 23(3-4), pages 155-181, April.
    10. Mansur, Erin T, 2007. "Upstream Competition and Vertical Integration in Electricity Markets," Journal of Law and Economics, University of Chicago Press, vol. 50(1), pages 125-156, February.
    11. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    12. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    13. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    14. Camelo, Sergio & Papavasiliou, Anthony & de Castro, Luciano & Riascos, Álvaro & Oren, Shmuel, 2018. "A structural model to evaluate the transition from self-commitment to centralized unit commitment," Energy Economics, Elsevier, vol. 75(C), pages 560-572.
    15. Juan Pablo Botero Duque & John J. Garc�a & Hermilson Vel�squez, 2016. "Efectos del cargo por confiabilidad sobre el precio spot de la energía eléctrica en Colombia," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, vol. 35(68), pages 491-519.
    16. Chi-Keung Woo, Ira Horowitz, Brian Horii, Ren Orans, and Jay Zarnikau, 2012. "Blowing in the Wind: Vanishing Payoffs of a Tolling Agreement for Natural-gas-fired Generation of Electricity in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    17. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    18. Ian W.H. Parry, 2005. "Fiscal Interactions and the Costs of Controlling Pollution from Electricity," RAND Journal of Economics, The RAND Corporation, vol. 36(4), pages 849-869, Winter.
    19. David P. Brown & Andrew Eckert & Douglas Silveira, 2023. "Strategic interaction between wholesale and ancillary service markets," Competition and Regulation in Network Industries, , vol. 24(4), pages 174-198, December.
    20. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.14189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.