IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.01085.html
   My bibliography  Save this paper

Some challenges of calibrating differentiable agent-based models

Author

Listed:
  • Arnau Quera-Bofarull
  • Joel Dyer
  • Anisoara Calinescu
  • Michael Wooldridge

Abstract

Agent-based models (ABMs) are a promising approach to modelling and reasoning about complex systems, yet their application in practice is impeded by their complexity, discrete nature, and the difficulty of performing parameter inference and optimisation tasks. This in turn has sparked interest in the construction of differentiable ABMs as a strategy for combatting these difficulties, yet a number of challenges remain. In this paper, we discuss and present experiments that highlight some of these challenges, along with potential solutions.

Suggested Citation

  • Arnau Quera-Bofarull & Joel Dyer & Anisoara Calinescu & Michael Wooldridge, 2023. "Some challenges of calibrating differentiable agent-based models," Papers 2307.01085, arXiv.org.
  • Handle: RePEc:arx:papers:2307.01085
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.01085
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. G. Bissiri & C. C. Holmes & S. G. Walker, 2016. "A general framework for updating belief distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1103-1130, November.
    2. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    2. Chiarella, Carl & Dieci, Roberto & He, Xue-Zhong, 2007. "Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework," Journal of Economic Behavior & Organization, Elsevier, vol. 62(3), pages 408-427, March.
    3. Siddiqi, Hammad, 2007. "Rational Interacting Agents and Volatility Clustering: A New Approach," MPRA Paper 2984, University Library of Munich, Germany.
    4. Bohm, Volker & Wenzelburger, Jan, 2005. "On the performance of efficient portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 721-740, April.
    5. Ladislav Kristoufek & Paulo Ferreira, 2018. "Capital asset pricing model in Portugal: Evidence from fractal regressions," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 17(3), pages 173-183, November.
    6. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01011701, HAL.
    7. Park, Beum-Jo & Kim, Myung-Joong, 2017. "A Dynamic Measure of Intentional Herd Behavior in Financial Markets," MPRA Paper 82025, University Library of Munich, Germany.
    8. Hommes, Cars & Huang, Hai & Wang, Duo, 2005. "A robust rational route to randomness in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1043-1072, June.
    9. Nuzzo, Simone & Morone, Andrea, 2017. "Asset markets in the lab: A literature review," Journal of Behavioral and Experimental Finance, Elsevier, vol. 13(C), pages 42-50.
    10. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    11. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    12. Cars Hommes & Anita Kopányi-Peuker & Joep Sonnemans, 2021. "Bubbles, crashes and information contagion in large-group asset market experiments," Experimental Economics, Springer;Economic Science Association, vol. 24(2), pages 414-433, June.
    13. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    14. Weihong HUANG & Zhenxi CHEN, 2012. "Heterogeneous Agents in Multi-markets: A Coupled Map Lattices Approach," Economic Growth Centre Working Paper Series 1211, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
    15. Mignot Sarah & Pellizzari Paolo & Westerhoff Frank, 2024. "Fake News and Asset Price Dynamics," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 244(4), pages 351-379.
    16. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    17. Hommes, Cars & Zhu, Mei, 2014. "Behavioral learning equilibria," Journal of Economic Theory, Elsevier, vol. 150(C), pages 778-814.
    18. Laborda Herrero, Juan & Laborda Herrero, Ricardo & Inurrieta Beruete, Alejandro, 2015. "El sistema de pensiones de reparto frente a los sistemas financiados: Una crítica a la teoría neoclásica/The Pay-As-You-Go Pension System against the Funded Schemes: A Criticism of the Neoclassical Th," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 759-782, Septiembr.
    19. Prat, Georges, 2013. "Equity risk premium and time horizon: What do the U.S. secular data say?," Economic Modelling, Elsevier, vol. 34(C), pages 76-88.
    20. Annarita Colasante & Simone Alfarano & Eva Camacho-Cuena & Mauro Gallegati, 2020. "Long-run expectations in a learning-to-forecast experiment: a simulation approach," Journal of Evolutionary Economics, Springer, vol. 30(1), pages 75-116, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.01085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.