IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.09474.html
   My bibliography  Save this paper

Probabilistic Forecast-based Portfolio Optimization of Electricity Demand at Low Aggregation Levels

Author

Listed:
  • Jungyeon Park
  • Est^ev~ao Alvarenga
  • Jooyoung Jeon
  • Ran Li
  • Fotios Petropoulos
  • Hokyun Kim
  • Kwangwon Ahn

Abstract

In the effort to achieve carbon neutrality through a decentralized electricity market, accurate short-term load forecasting at low aggregation levels has become increasingly crucial for various market participants' strategies. Accurate probabilistic forecasts at low aggregation levels can improve peer-to-peer energy sharing, demand response, and the operation of reliable distribution networks. However, these applications require not only probabilistic demand forecasts, which involve quantification of the forecast uncertainty, but also determining which consumers to include in the aggregation to meet electricity supply at the forecast lead time. While research papers have been proposed on the supply side, no similar research has been conducted on the demand side. This paper presents a method for creating a portfolio that optimally aggregates demand for a given energy demand, minimizing forecast inaccuracy of overall low-level aggregation. Using probabilistic load forecasts produced by either ARMA-GARCH models or kernel density estimation (KDE), we propose three approaches to creating a portfolio of residential households' demand: Forecast Validated, Seasonal Residual, and Seasonal Similarity. An evaluation of probabilistic load forecasts demonstrates that all three approaches enhance the accuracy of forecasts produced by random portfolios, with the Seasonal Residual approach for Korea and Ireland outperforming the others in terms of both accuracy and computational efficiency.

Suggested Citation

  • Jungyeon Park & Est^ev~ao Alvarenga & Jooyoung Jeon & Ran Li & Fotios Petropoulos & Hokyun Kim & Kwangwon Ahn, 2023. "Probabilistic Forecast-based Portfolio Optimization of Electricity Demand at Low Aggregation Levels," Papers 2305.09474, arXiv.org.
  • Handle: RePEc:arx:papers:2305.09474
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.09474
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai Manabu & So Mike K.P., 2015. "Long Memory and Asymmetry for Matrix-Exponential Dynamic Correlation Processes," Journal of Time Series Econometrics, De Gruyter, vol. 7(1), pages 69-94, January.
    2. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    3. Lee, Ming-Chih & Chiu, Chien-Liang & Lee, Yen-Hsien, 2007. "Is twin behavior of Nikkei 225 index futures the same?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 199-210.
    4. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    5. Darvas, Zsolt, 1999. "Az árfolyamsávok empirikus modelljei és a devizaárfolyam sávon belüli előrejelezhetetlensége [Empirical models of exchange rate target zones]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 507-529.
    6. Vlaar, P. J. G. & Palm, F. C., 1997. "Inflation differentials and excess returns in the European Monetary System," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(1), pages 1-20, April.
    7. Luca Vincenzo Ballestra & Enzo D’Innocenzo & Andrea Guizzardi, 2024. "Score-Driven Modeling with Jumps: An Application to S&P500 Returns and Options," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 375-406.
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    10. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    11. Cheung, Yin-Wong & Chung, Sang-Kuck, 2009. "A Long Memory Model with Mixed Normal GARCH for US Inflation Data," Santa Cruz Department of Economics, Working Paper Series qt2202s99q, Department of Economics, UC Santa Cruz.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    13. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    14. Beine, Michel & Laurent, Sebastien, 2003. "Central bank interventions and jumps in double long memory models of daily exchange rates," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 641-660, December.
    15. Gregor Dorfleitner & Carina Lung, 2018. "Cryptocurrencies from the perspective of euro investors: a re-examination of diversification benefits and a new day-of-the-week effect," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 472-494, December.
    16. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    17. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    18. Dette, Holger & Weißbach, Rafael, 2006. "A Bootstrap Test for the Comparison of Nonlinear Time Series - with Application to Interest Rate Modelling," Technical Reports 2006,30, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    20. Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Time-varying mixture GARCH models and asymmetric volatility," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 602-623.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.09474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.