IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.02171.html
   My bibliography  Save this paper

Faster estimation of dynamic discrete choice models using index invertibility

Author

Listed:
  • Jackson Bunting
  • Takuya Ura

Abstract

Many estimators of dynamic discrete choice models with persistent unobserved heterogeneity have desirable statistical properties but are computationally intensive. In this paper we propose a method to quicken estimation for a broad class of dynamic discrete choice problems by exploiting semiparametric index restrictions. Specifically, we propose an estimator for models whose reduced form parameters are invertible functions of one or more linear indices (Ahn, Ichimura, Powell and Ruud 2018), a property we term index invertibility. We establish that index invertibility implies a set of equality constraints on the model parameters. Our proposed estimator uses the equality constraints to decrease the dimension of the optimization problem, thereby generating computational gains. Our main result shows that the proposed estimator is asymptotically equivalent to the unconstrained, computationally heavy estimator. In addition, we provide a series of results on the number of independent index restrictions on the model parameters, providing theoretical guidance on the extent of computational gains. Finally, we demonstrate the advantages of our approach via Monte Carlo simulations.

Suggested Citation

  • Jackson Bunting & Takuya Ura, 2023. "Faster estimation of dynamic discrete choice models using index invertibility," Papers 2304.02171, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2304.02171
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.02171
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. V. Joseph Hotz & Robert A. Miller & Seth Sanders & Jeffrey Smith, 1994. "A Simulation Estimator for Dynamic Models of Discrete Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 265-289.
    2. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    3. Fox, Jeremy T. & Kim, Kyoo il & Yang, Chenyu, 2016. "A simple nonparametric approach to estimating the distribution of random coefficients in structural models," Journal of Econometrics, Elsevier, vol. 195(2), pages 236-254.
    4. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    5. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    6. Victor Aguirregabiria & Arvind Magesan, 2020. "Identification and Estimation of Dynamic Games When Players’ Beliefs Are Not in Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(2), pages 582-625.
    7. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-548, May.
    8. David A. Harville, 1997. "Matrix Algebra From a Statistician’s Perspective," Springer Books, Springer, number 978-0-387-22677-4, March.
    9. Federico A Bugni & Jackson Bunting, 2021. "On the Iterated Estimation of Dynamic Discrete Choice Games [Pseudo maximum likelihood estimation of structural models involving fixed-point problems]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(3), pages 1031-1073.
    10. Jackson Bunting & Paul Diegert & Arnaud Maurel, 2024. "Heterogeneity, Uncertainty and Learning: Semiparametric Identification and Estimation," Papers 2402.08575, arXiv.org, revised Jun 2025.
    11. John Kennan & James R. Walker, 2011. "The Effect of Expected Income on Individual Migration Decisions," Econometrica, Econometric Society, vol. 79(1), pages 211-251, January.
    12. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    13. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    14. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, January.
    15. Martin Pesendorfer & Philipp Schmidt-Dengler, 2008. "Asymptotic Least Squares Estimators for Dynamic Games -super-1," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 901-928.
    16. Kristensen, Dennis & Mogensen, Patrick K. & Moon, Jong Myun & Schjerning, Bertel, 2021. "Solving dynamic discrete choice models using smoothing and sieve methods," Journal of Econometrics, Elsevier, vol. 223(2), pages 328-360.
    17. Jeremy T. Fox & Kyoo il Kim & Stephen P. Ryan & Patrick Bajari, 2011. "A simple estimator for the distribution of random coefficients," Quantitative Economics, Econometric Society, vol. 2(3), pages 381-418, November.
    18. Peter Arcidiacono, 2005. "Affirmative Action in Higher Education: How Do Admission and Financial Aid Rules Affect Future Earnings?," Econometrica, Econometric Society, vol. 73(5), pages 1477-1524, September.
    19. Magali Beffy & Denis Fougère & Arnaud Maurel, 2012. "Choosing the Field of Study in Postsecondary Education: Do Expected Earnings Matter?," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 334-347, February.
    20. Kenneth I. Wolpin & Petra E. Todd, 2006. "Assessing the Impact of a School Subsidy Program in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling and Fertility," American Economic Review, American Economic Association, vol. 96(5), pages 1384-1417, December.
    21. Peter Arcidiacono & Patrick Bayer & Federico A. Bugni & Jonathan James, 2013. "Approximating High-dimensional Dynamic Models: Sieve Value Function Iteration," Advances in Econometrics, in: Structural Econometric Models, volume 31, pages 45-95, Emerald Group Publishing Limited.
    22. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    23. Qihui Chen & Zheng Fang, 2019. "Improved inference on the rank of a matrix," Quantitative Economics, Econometric Society, vol. 10(4), pages 1787-1824, November.
    24. Bresnahan, Timothy F & Reiss, Peter C, 1991. "Entry and Competition in Concentrated Markets," Journal of Political Economy, University of Chicago Press, vol. 99(5), pages 977-1009, October.
    25. Hyungtaik Ahn & Hidehiko Ichimura & James L. Powell & Paul A. Ruud, 2018. "Simple Estimators for Invertible Index Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 1-10, January.
    26. Hyungtaik Ahn & Hidehiko Ichimura & James L. Powell & Paul A. Ruud, 2018. "Rejoinder for “Simple Estimators for Invertible Index Models”," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 22-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Arcidiacono & Paul B. Ellickson, 2011. "Practical Methods for Estimation of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 363-394, September.
    2. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    3. Hu, Yingyao & Xin, Yi, 2024. "Identification and estimation of dynamic structural models with unobserved choices," Journal of Econometrics, Elsevier, vol. 242(2).
    4. Yoon, Jangsu, 2024. "Identification and estimation of sequential games of incomplete information with multiple equilibria," Journal of Econometrics, Elsevier, vol. 238(2).
    5. Adam Dearing S.C. & Jason R Blevins, 2025. "Efficient and Convergent Sequential Pseudo-Likelihood Estimation of Dynamic Discrete Games," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 92(2), pages 981-1021.
    6. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2008. "Pseudo-likelihood estimation and bootstrap inference for structural discrete Markov decision models," Journal of Econometrics, Elsevier, vol. 146(1), pages 92-106, September.
    7. Victor Aguirregabiria & Margaret Slade, 2017. "Empirical models of firms and industries," Canadian Journal of Economics, Canadian Economics Association, vol. 50(5), pages 1445-1488, December.
    8. Aguirregabiria, Victor & Nevo, Aviv, 2010. "Recent developments in empirical IO: dynamic demand and dynamic games," MPRA Paper 27814, University Library of Munich, Germany.
    9. Peter Arcidiacono & Patrick Bayer & Jason R. Blevins & Paul B. Ellickson, 2016. "Estimation of Dynamic Discrete Choice Models in Continuous Time with an Application to Retail Competition," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(3), pages 889-931.
    10. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    11. Khai Chiong & Alfred Galichon & Matt Shum, 2015. "Duality in Dynamic Discrete Choice Models," Post-Print hal-03568184, HAL.
    12. repec:hal:spmain:info:hdl:2441/7svo6civd6959qvmn4965cth1d is not listed on IDEAS
    13. Jackson Bunting, 2022. "Continuous permanent unobserved heterogeneity in dynamic discrete choice models," Papers 2202.03960, arXiv.org, revised Sep 2025.
    14. Sasaki, Yuya & Takahashi, Yuya & Xin, Yi & Hu, Yingyao, 2023. "Dynamic discrete choice models with incomplete data: Sharp identification," Journal of Econometrics, Elsevier, vol. 236(1).
    15. Taisuke Otsu & Martin Pesendorfer, 2021. "Equilibrium multiplicity in dynamic games: testing and estimation," STICERD - Econometrics Paper Series 618, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. repec:spo:wpmain:info:hdl:2441/7svo6civd6959qvmn4965cth1d is not listed on IDEAS
    17. Khai Chiong & Alfred Galichon & Matt Shum, 2015. "Duality in Dynamic Discrete Choice Models," Sciences Po Economics Publications (main) hal-03568184, HAL.
    18. Khai Xiang Chiong & Alfred Galichon & Matt Shum, 2021. "Duality in dynamic discrete-choice models," Papers 2102.06076, arXiv.org, revised Feb 2021.
    19. Victor Aguirregabiria & Mathieu Marcoux, 2021. "Imposing equilibrium restrictions in the estimation of dynamic discrete games," Quantitative Economics, Econometric Society, vol. 12(4), pages 1223-1271, November.
    20. Khai Chiong & Alfred Galichon & Matt Shum, 2015. "Duality in Dynamic Discrete Choice Models," SciencePo Working papers hal-03568184, HAL.
    21. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    22. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 565-596, May.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.02171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.