IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.11078.html
   My bibliography  Save this paper

New developments in econophysics: Option pricing formulas

Author

Listed:
  • Moawia Alghalith

Abstract

We synthesize and discuss some new developments in econophysics. In doing so, we focus on option pricing. We relax the assumptions of constant volatility and interest rate. In doing so, we rely on the square root of the Brownian motion. We also provide simple, closed-form pricing formulas for the American and Bermudan options.

Suggested Citation

  • Moawia Alghalith, 2023. "New developments in econophysics: Option pricing formulas," Papers 2301.11078, arXiv.org.
  • Handle: RePEc:arx:papers:2301.11078
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.11078
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alghalith, Moawia, 2018. "Pricing the American options using the Black–Scholes pricing formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 443-445.
    2. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    3. Alghalith, Moawia, 2020. "Pricing options under simultaneous stochastic volatility and jumps: A simple closed-form formula without numerical/computational methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Frasca, Marco & Farina, Alfonso & Alghalith, Moawia, 2021. "Quantized noncommutative Riemann manifolds and stochastic processes: The theoretical foundations of the square root of Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    6. Alghalith, Moawia, 2020. "Pricing the American options: A closed-form, simple formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Moawia Alghalith, 2021. "Pricing Options Under Stochastic Interest Rate And The Frasca–Farina Process: A Simple, Explicit Formula," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-4, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    2. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    3. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    4. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    5. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    6. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    7. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    8. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    9. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    10. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    11. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Yishen Li & Jin Zhang, 2004. "Option pricing with Weyl-Titchmarsh theory," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 457-464.
    13. Ako Doffou & Jimmy E. Hilliard, 2001. "Pricing Currency Options Under Stochastic Interest Rates And Jump-Diffusion Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(4), pages 565-585, December.
    14. Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
    15. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    16. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    17. Shin-Yun Wang & Ming-Che Chuang & Shih-Kuei Lin & So-De Shyu, 2021. "Option pricing under stock market cycles with jump risks: evidence from the S&P 500 index," Review of Quantitative Finance and Accounting, Springer, vol. 56(1), pages 25-51, January.
    18. Olivier Scaillet & Adrien Treccani & Christopher Trevisan, 2020. "High-Frequency Jump Analysis of the Bitcoin Market," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 209-232.
    19. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
    20. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.11078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.