IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.14737.html
   My bibliography  Save this paper

Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update

Author

Listed:
  • Georgios Piliouras
  • Ryann Sim
  • Stratis Skoulakis

Abstract

In this paper, we provide a novel and simple algorithm, Clairvoyant Multiplicative Weights Updates (CMWU) for regret minimization in general games. CMWU effectively corresponds to the standard MWU algorithm but where all agents, when updating their mixed strategies, use the payoff profiles based on tomorrow's behavior, i.e. the agents are clairvoyant. CMWU achieves constant regret of $\ln(m)/\eta$ in all normal-form games with m actions and fixed step-sizes $\eta$. Although CMWU encodes in its definition a fixed point computation, which in principle could result in dynamics that are neither computationally efficient nor uncoupled, we show that both of these issues can be largely circumvented. Specifically, as long as the step-size $\eta$ is upper bounded by $\frac{1}{(n-1)V}$, where $n$ is the number of agents and $[0,V]$ is the payoff range, then the CMWU updates can be computed linearly fast via a contraction map. This implementation results in an uncoupled online learning dynamic that admits a $O (\log T)$-sparse sub-sequence where each agent experiences at most $O(nV\log m)$ regret. This implies that the CMWU dynamics converge with rate $O(nV \log m \log T / T)$ to a \textit{Coarse Correlated Equilibrium}. The latter improves on the current state-of-the-art convergence rate of \textit{uncoupled online learning dynamics} \cite{daskalakis2021near,anagnostides2021near}.

Suggested Citation

  • Georgios Piliouras & Ryann Sim & Stratis Skoulakis, 2021. "Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update," Papers 2111.14737, arXiv.org, revised Jun 2022.
  • Handle: RePEc:arx:papers:2111.14737
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.14737
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Young, H. Peyton, 2004. "Strategic Learning and its Limits," OUP Catalogue, Oxford University Press, number 9780199269181.
    2. Sergiu Hart & Andreu Mas-Colell, 2013. "Simple Adaptive Strategies:From Regret-Matching to Uncoupled Dynamics," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8408, October.
    3. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," Working Papers halshs-03735680, HAL.
    2. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    3. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    4. Dziubiński, Marcin & Roy, Jaideep, 2012. "Popularity of reinforcement-based and belief-based learning models: An evolutionary approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 433-454.
    5. Babichenko, Yakov & Rubinstein, Aviad, 2022. "Communication complexity of approximate Nash equilibria," Games and Economic Behavior, Elsevier, vol. 134(C), pages 376-398.
    6. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    7. Jim Engle-Warnick & Ed Hopkins, 2006. "A Simple Test of Learning Theory," Levine's Bibliography 321307000000000724, UCLA Department of Economics.
    8. Dridi, Slimane & Lehmann, Laurent, 2014. "On learning dynamics underlying the evolution of learning rules," Theoretical Population Biology, Elsevier, vol. 91(C), pages 20-36.
    9. Sergiu Hart & Andreu Mas-Colell, 2013. "Stochastic Uncoupled Dynamics And Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 8, pages 165-189, World Scientific Publishing Co. Pte. Ltd..
    10. Noah Gans & George Knox & Rachel Croson, 2007. "Simple Models of Discrete Choice and Their Performance in Bandit Experiments," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 383-408, December.
    11. Terracol, Antoine & Vaksmann, Jonathan, 2009. "Dumbing down rational players: Learning and teaching in an experimental game," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 54-71, May.
    12. Antonio Cabrales & Rosemarie Nagel & Roc Armenter, 2007. "Equilibrium selection through incomplete information in coordination games: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 10(3), pages 221-234, September.
    13. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.
    14. Iftekhar, M. S. & Tisdell, J. G., 2018. "Learning in repeated multiple unit combinatorial auctions: An experimental study," Working Papers 267301, University of Western Australia, School of Agricultural and Resource Economics.
    15. Astrid Dannenberg & Carlo Gallier, 2020. "The choice of institutions to solve cooperation problems: a survey of experimental research," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 716-749, September.
    16. Sacha Bourgeois-Gironde, 2017. "How regret moves individual and collective choices towards rationality," Chapters, in: Morris Altman (ed.), Handbook of Behavioural Economics and Smart Decision-Making, chapter 11, pages 188-204, Edward Elgar Publishing.
    17. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    18. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    19. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    20. Robin Nicole & Aleksandra Alori'c & Peter Sollich, 2020. "Fragmentation in trader preferences among multiple markets: Market coexistence versus single market dominance," Papers 2012.04103, arXiv.org, revised Aug 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.14737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.