IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.11286.html
   My bibliography  Save this paper

Portfolio optimization with idiosyncratic and systemic risks for financial networks

Author

Listed:
  • Yajie Yang
  • Longfeng Zhao
  • Lin Chen
  • Chao Wang
  • Jihui Han

Abstract

In this study, we propose a new multi-objective portfolio optimization with idiosyncratic and systemic risks for financial networks. The two risks are measured by the idiosyncratic variance and the network clustering coefficient derived from the asset correlation networks, respectively. We construct three types of financial networks in which nodes indicate assets and edges are based on three correlation measures. Starting from the multi-objective model, we formulate and solve the asset allocation problem. We find that the optimal portfolios obtained through the multi-objective with networked approach have a significant over-performance in terms of return measures in an out-of-sample framework. This is further supported by the less drawdown during the periods of the stock market fluctuating downward. According to analyzing different datasets, we also show that improvements made to portfolio strategies are robust.

Suggested Citation

  • Yajie Yang & Longfeng Zhao & Lin Chen & Chao Wang & Jihui Han, 2021. "Portfolio optimization with idiosyncratic and systemic risks for financial networks," Papers 2111.11286, arXiv.org.
  • Handle: RePEc:arx:papers:2111.11286
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.11286
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana Roman & Kenneth Darby-Dowman & Gautam Mitra, 2007. "Mean-risk models using two risk measures: a multi-objective approach," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 443-458.
    2. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Gustavo Athayde & Renato G. Flores, 2002. "The Portfolio Frontier with Higher Moments: The Undiscovered Country," Computing in Economics and Finance 2002 209, Society for Computational Economics.
    5. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    6. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    7. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    8. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    9. Li, Yan & Jiang, Xiong-Fei & Tian, Yue & Li, Sai-Ping & Zheng, Bo, 2019. "Portfolio optimization based on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 671-681.
    10. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    11. Han, Yufeng & Yang, Ke & Zhou, Guofu, 2013. "A New Anomaly: The Cross-Sectional Profitability of Technical Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(5), pages 1433-1461, October.
    12. Pawe{l} Fiedor, 2014. "Mutual Information Rate-Based Networks in Financial Markets," Papers 1401.2548, arXiv.org.
    13. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    14. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2021. "Asset allocation: new evidence through network approaches," Annals of Operations Research, Springer, vol. 299(1), pages 61-80, April.
    15. Huang, Wei & Lai, Pei-Chun & Bessler, David A., 2018. "On the changing structure among Chinese equity markets: Hong Kong, Shanghai, and Shenzhen," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1020-1032.
    16. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    17. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    18. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Mestre, 2023. "Stock profiling using time–frequency-varying systematic risk measure," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    2. Xu, Qifa & Li, Mengting & Jiang, Cuixia, 2021. "Network-augmented time-varying parametric portfolio selection: Evidence from the Chinese stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    3. Yizhuo Zhang & Rui Chen & Ding Ma, 2020. "A Weighted and Directed Perspective of Global Stock Market Connectedness: A Variance Decomposition and GERGM Framework," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    4. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    5. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    6. Jean-Baptiste Hasse, 2022. "Systemic risk: a network approach," Empirical Economics, Springer, vol. 63(1), pages 313-344, July.
    7. Jean-Baptiste Hasse, 2020. "Systemic Risk: a Network Approach," Working Papers halshs-02893780, HAL.
    8. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
    9. Mengting Li & Qifa Xu & Cuixia Jiang & Qinna Zhao, 2023. "The role of tail network topological characteristic in portfolio selection: A TNA‐PMC model," International Review of Finance, International Review of Finance Ltd., vol. 23(1), pages 37-57, March.
    10. Daniel Felix Ahelegbey & Paolo Giudici & Fatemeh Mojtahedi, 2022. "Crypto Asset Portfolio Selection," FinTech, MDPI, vol. 1(1), pages 1-9, February.
    11. Francesco Cesarone & Manuel L. Martino & Fabio Tardella, 2023. "Mean-Variance-VaR portfolios: MIQP formulation and performance analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 1043-1069, September.
    12. Mayoral, Silvia & Moreno, David & Zareei, Abalfazl, 2022. "Using a hedging network to minimize portfolio risk," Finance Research Letters, Elsevier, vol. 44(C).
    13. Du, Ruijin & Dong, Gaogao & Tian, Lixin & Wang, Yougui & Zhao, Longfeng & Zhang, Xin & Vilela, André L.M. & Stanley, H. Eugene, 2019. "Identifying the peak point of systemic risk in international crude oil importing trade," Energy, Elsevier, vol. 176(C), pages 281-291.
    14. Addi, Abdelhamid & Bouoiyour, Jamal, 2023. "Interconnectedness and extreme risk: Evidence from dual banking systems," Economic Modelling, Elsevier, vol. 120(C).
    15. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    16. Ahmad, Wasim & Tiwari, Shiv Ratan & Wadhwani, Akshay & Khan, Mohammad Azeem & Bekiros, Stelios, 2023. "Financial networks and systemic risk vulnerabilities: A tale of Indian banks," Research in International Business and Finance, Elsevier, vol. 65(C).
    17. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    18. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    19. Xin Yang & Shan Chen & Hong Liu & Xiaoguang Yang & Chuangxia Huang, 2023. "Jump volatility spillover network based measurement of systemic importance of Chinese financial institutions," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1201-1213, April.
    20. Zhang, Weiping & Zhuang, Xintian & Lu, Yang & Wang, Jian, 2020. "Spatial linkage of volatility spillovers and its explanation across G20 stock markets: A network framework," International Review of Financial Analysis, Elsevier, vol. 71(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.11286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.