IDEAS home Printed from
   My bibliography  Save this paper

Mutual Information Rate-Based Networks in Financial Markets


  • Pawe{l} Fiedor


In the last years efforts in econophysics have been shifted to study how network theory can facilitate understanding of complex financial markets. Main part of these efforts is the study of correlation-based hierarchical networks. This is somewhat surprising as the underlying assumptions of research looking at financial markets is that they behave chaotically. In fact it's common for econophysicists to estimate maximal Lyapunov exponent for log returns of a given financial asset to confirm that prices behave chaotically. Chaotic behaviour is only displayed by dynamical systems which are either non-linear or infinite-dimensional. Therefore it seems that non-linearity is an important part of financial markets, which is proved by numerous studies confirming financial markets display significant non-linear behaviour, yet network theory is used to study them using almost exclusively correlations and partial correlations, which are inherently dealing with linear dependencies only. In this paper we introduce a way to incorporate non-linear dynamics and dependencies into hierarchical networks to study financial markets using mutual information and its dynamical extension: the mutual information rate. We estimate it using multidimensional Lempel-Ziv complexity and then convert it into an Euclidean metric in order to find appropriate topological structure of networks modelling financial markets. We show that this approach leads to different results than correlation-based approach used in most studies, on the basis of 15 biggest companies listed on Warsaw Stock Exchange in the period of 2009-2012 and 91 companies listed on NYSE100 between 2003 and 2013, using minimal spanning trees and planar maximally filtered graphs.

Suggested Citation

  • Pawe{l} Fiedor, 2014. "Mutual Information Rate-Based Networks in Financial Markets," Papers 1401.2548,
  • Handle: RePEc:arx:papers:1401.2548

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485,, revised Feb 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1401.2548. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.