IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.06089.html
   My bibliography  Save this paper

MinP Score Tests with an Inequality Constrained Parameter Space

Author

Listed:
  • Giuseppe Cavaliere
  • Zeng-Hua Lu
  • Anders Rahbek
  • Yuhong Yang

Abstract

Score tests have the advantage of requiring estimation alone of the model restricted by the null hypothesis, which often is much simpler than models defined under the alternative hypothesis. This is typically so when the alternative hypothesis involves inequality constraints. However, existing score tests address only jointly testing all parameters of interest; a leading example is testing all ARCH parameters or variances of random coefficients being zero or not. In such testing problems rejection of the null hypothesis does not provide evidence on rejection of specific elements of parameter of interest. This paper proposes a class of one-sided score tests for testing a model parameter that is subject to inequality constraints. Proposed tests are constructed based on the minimum of a set of $p$-values. The minimand includes the $p$-values for testing individual elements of parameter of interest using individual scores. It may be extended to include a $p$-value of existing score tests. We show that our tests perform better than/or perform as good as existing score tests in terms of joint testing, and has furthermore the added benefit of allowing for simultaneously testing individual elements of parameter of interest. The added benefit is appealing in the sense that it can identify a model without estimating it. We illustrate our tests in linear regression models, ARCH and random coefficient models. A detailed simulation study is provided to examine the finite sample performance of the proposed tests and we find that our tests perform well as expected.

Suggested Citation

  • Giuseppe Cavaliere & Zeng-Hua Lu & Anders Rahbek & Yuhong Yang, 2021. "MinP Score Tests with an Inequality Constrained Parameter Space," Papers 2107.06089, arXiv.org.
  • Handle: RePEc:arx:papers:2107.06089
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.06089
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maxwell King & Ping Wu, 1997. "Locally optimal one-sided tests for multiparameter hypotheses," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 131-156.
    2. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
    3. Ketz, Philipp, 2018. "Subvector inference when the true parameter vector may be near or at the boundary," Journal of Econometrics, Elsevier, vol. 207(2), pages 285-306.
    4. Gourieroux, Christian & Holly, Alberto & Monfort, Alain, 1982. "Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters," Econometrica, Econometric Society, vol. 50(1), pages 63-80, January.
    5. Lee, John H H & King, Maxwell L, 1993. "A Locally Most Mean Powerful Based Score Test for ARCH and GARCH Regression Disturbances," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 17-27, January.
    6. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    7. Romano Joseph P. & Shaikh Azeem & Wolf Michael, 2011. "Consonance and the Closure Method in Multiple Testing," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-25, February.
    8. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Admissible Invariant Similar Tests For Instrumental Variables Regression," Econometric Theory, Cambridge University Press, vol. 25(3), pages 806-818, June.
    9. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    10. Andrews, Donald W K, 1996. "Admissibility of the Likelihood Ratio Test When the Parameter Space Is Restricted under the Alternative," Econometrica, Econometric Society, vol. 64(3), pages 705-718, May.
    11. Joseph P. Romano & Michael Wolf, 2005. "Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
    12. Wolak, Frank A., 1989. "Local and Global Testing of Linear and Nonlinear Inequality Constraints in Nonlinear Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(1), pages 1-35, April.
    13. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    14. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    15. Zeng-Hua Lu, 2016. "Extended MaxT Tests of One-Sided Hypotheses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 423-437, March.
    16. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    17. Wolak, Frank A., 1989. "Testing inequality constraints in linear econometric models," Journal of Econometrics, Elsevier, vol. 41(2), pages 205-235, June.
    18. Lu, Zeng-Hua, 2013. "Halfline tests for multivariate one-sided alternatives," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 479-490.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng-Hua Lu, 2020. "Bahadur intercept with applications to one-sided testing," Statistical Papers, Springer, vol. 61(2), pages 645-658, April.
    2. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
    3. Christian Francq & Jean-Michel Zakoïan, 2006. "Inference in GARCH when some coefficients are equal to zero," Computing in Economics and Finance 2006 64, Society for Computational Economics.
    4. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    5. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    6. Jin Lee, 2000. "One-Sided Testing for ARCH Effect Using Wavelets," Econometric Society World Congress 2000 Contributed Papers 1214, Econometric Society.
    7. Zeng-Hua Lu, 2019. "Extended MinP Tests for Global and Multiple testing," Papers 1911.04696, arXiv.org, revised Aug 2024.
    8. Andrews, Donald W. K., 1998. "Hypothesis testing with a restricted parameter space," Journal of Econometrics, Elsevier, vol. 84(1), pages 155-199, May.
    9. Zeng-Hua Lu & Alec Zuo, 2017. "Child disability, welfare payments, marital status and mothers’ labor supply: Evidence from Australia," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1339769-133, January.
    10. Fan, Yanqin & Shi, Xuetao, 2023. "Wald, QLR, and score tests when parameters are subject to linear inequality constraints," Journal of Econometrics, Elsevier, vol. 235(2), pages 2005-2026.
    11. Zeng-Hua Lu, 2016. "Extended MaxT Tests of One-Sided Hypotheses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 423-437, March.
    12. Martin Carree & Boris Lokshin & René Belderbos, 2011. "A note on testing for complementarity and substitutability in the case of multiple practices," Journal of Productivity Analysis, Springer, vol. 35(3), pages 263-269, June.
    13. Abadir, Karim M. & Distaso, Walter, 2007. "Testing joint hypotheses when one of the alternatives is one-sided," Journal of Econometrics, Elsevier, vol. 140(2), pages 695-718, October.
    14. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2020. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Journal of Econometrics, Elsevier, vol. 215(1), pages 165-183.
    15. Isaiah Andrews & Timothy B. Armstrong, 2017. "Unbiased instrumental variables estimation under known first‐stage sign," Quantitative Economics, Econometric Society, vol. 8(2), pages 479-503, July.
    16. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    17. Hughes, Anthony W. & King, Maxwell L. & Kwek, Kian Teng, 2004. "Selecting the order of an ARCH model," Economics Letters, Elsevier, vol. 83(2), pages 269-275, May.
    18. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    19. Christian Gourieroux & Joann Jasiak, 2006. "A Degeneracy in the Analysis of Volatility and Covolatility Effects," Working Papers 2006-30, Center for Research in Economics and Statistics.
    20. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2019. "Testing Garch-X Type Models," Econometric Theory, Cambridge University Press, vol. 35(5), pages 1012-1047, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.06089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.