IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.05189.html
   My bibliography  Save this paper

Urban Epidemic Hazard Index for Chinese Cities: Why Did Small Cities Become Epidemic Hotspots?

Author

Listed:
  • Tianyi Li
  • Jiawen Luo
  • Cunrui Huang

Abstract

Multiple small- to middle-scale cities, mostly located in northern China, became epidemic hotspots during the second wave of the spread of COVID-19 in early 2021. Despite qualitative discussions of potential social-economic causes, it remains unclear how this pattern could be accounted for from a quantitative approach. Through the development of an urban epidemic hazard index (EpiRank), we came up with a mathematical explanation for this phenomenon. The index is constructed from epidemic simulations on a multi-layer transportation network model on top of local SEIR transmission dynamics, which characterizes intra- and inter-city compartment population flow with a detailed mathematical description. Essentially, we argue that these highlighted cities possess greater epidemic hazards due to the combined effect of large regional population and small inter-city transportation. The proposed index, dynamic and applicable to different epidemic settings, could be a useful indicator for the risk assessment and response planning of urban epidemic hazards in China; the model framework is modularized and can be adapted for other nations without much difficulty.

Suggested Citation

  • Tianyi Li & Jiawen Luo & Cunrui Huang, 2021. "Urban Epidemic Hazard Index for Chinese Cities: Why Did Small Cities Become Epidemic Hotspots?," Papers 2103.05189, arXiv.org.
  • Handle: RePEc:arx:papers:2103.05189
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.05189
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Greiving & Mark Fleischhauer & Johannes Luckenkotter, 2006. "A Methodology for an integrated risk assessment of spatially relevant hazards," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 49(1), pages 1-19.
    2. Serina Chang & Emma Pierson & Pang Wei Koh & Jaline Gerardin & Beth Redbird & David Grusky & Jure Leskovec, 2021. "Mobility network models of COVID-19 explain inequities and inform reopening," Nature, Nature, vol. 589(7840), pages 82-87, January.
    3. Shuo Feng & Zebang Feng & Chen Ling & Chen Chang & Zhongke Feng, 2021. "Prediction of the COVID-19 epidemic trends based on SEIR and AI models," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-15, January.
    4. Frank Schlosser & Benjamin F. Maier & Olivia Jack & David Hinrichs & Adrian Zachariae & Dirk Brockmann, 2020. "COVID-19 lockdown induces disease-mitigating structural changes in mobility networks," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(52), pages 32883-32890, December.
    5. Yun Qiu & Xi Chen & Wei Shi, 2020. "Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1127-1172, October.
    6. Yuting Cao & Ran Liu & Wei Qi & Jin Wen, 2020. "Spatial Heterogeneity of Housing Space Consumption in Urban China: Locals vs. Inter-and Intra-Provincial Migrants," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    7. Freya M Shearer & Robert Moss & Jodie McVernon & Joshua V Ross & James M McCaw, 2020. "Infectious disease pandemic planning and response: Incorporating decision analysis," PLOS Medicine, Public Library of Science, vol. 17(1), pages 1-12, January.
    8. Shengjie Lai & Nick W. Ruktanonchai & Liangcai Zhou & Olivia Prosper & Wei Luo & Jessica R. Floyd & Amy Wesolowski & Mauricio Santillana & Chi Zhang & Xiangjun Du & Hongjie Yu & Andrew J. Tatem, 2020. "Effect of non-pharmaceutical interventions to contain COVID-19 in China," Nature, Nature, vol. 585(7825), pages 410-413, September.
    9. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Kang, Liujiang, 2023. "Interaction between travel restriction policies and the spread of COVID-19," Transport Policy, Elsevier, vol. 136(C), pages 209-227.
    2. Qiang Wang & Min Su & Min Zhang & Rongrong Li, 2021. "Integrating Digital Technologies and Public Health to Fight Covid-19 Pandemic: Key Technologies, Applications, Challenges and Outlook of Digital Healthcare," IJERPH, MDPI, vol. 18(11), pages 1-50, June.
    3. Liang, Zhenglin & Jiang, Chen & Sun, Muxia & Xue, Zongqi & Li, Yan-Fu, 2023. "Resilience analysis for confronting the spreading risk of contagious diseases," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. X. Angela Yao & Andrew Crooks & Bin Jiang & Jukka Krisp & Xintao Liu & Haosheng Huang, 2023. "An overview of urban analytical approaches to combating the Covid-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1133-1143, June.
    6. Keyang Li & Yu Qin & Jing Wu & Jubo Yan, 2023. "Perceived economic prospects during the early stage of COVID‐19 breakout," Contemporary Economic Policy, Western Economic Association International, vol. 41(4), pages 696-713, October.
    7. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    8. Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
    9. Yizhen Zhang & Zhen Deng & Agus Supriyadi & Rui Song & Tao Wang, 2022. "Spatiotemporal spread characteristics and influencing factors of COVID‐19 cases: Based on big data of population migration in China," Growth and Change, Wiley Blackwell, vol. 53(4), pages 1694-1715, December.
    10. Feng Wang & Xing Ge & Danwen Huang, 2022. "Government Intervention, Human Mobility, and COVID-19: A Causal Pathway Analysis from 121 Countries," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    11. Xiaoyan Mu & Xiaohu Zhang & Anthony Gar-On Yeh & Yang Yu & Jiejing Wang, 2023. "Structural Changes in Human Mobility Under the Zero-COVID Strategy in China," Environment and Planning B, , vol. 50(9), pages 2527-2542, November.
    12. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Yang, Zhenzhen & Yuan, Zhilu & Kang, Liujiang, 2022. "The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 117(C), pages 169-180.
    13. Ye, Maoxin & Lyu, Zeyu, 2020. "Trust, risk perception, and COVID-19 infections: Evidence from multilevel analyses of combined original dataset in China," Social Science & Medicine, Elsevier, vol. 265(C).
    14. Ugofilippo Basellini & Diego Alburez-Gutierrez & Emanuele Del Fava & Daniela Perrotta & Marco Bonetti & Carlo Giovanni Camarda & Emilio Zagheni, 2020. "Linking excess mortality to Google mobility data during the COVID-19 pandemic in England and Wales," Working Papers axehlaypkgkzhr-blqv4, French Institute for Demographic Studies.
    15. Lin Chen & Fengli Xu & Zhenyu Han & Kun Tang & Pan Hui & James Evans & Yong Li, 2022. "Strategic COVID-19 vaccine distribution can simultaneously elevate social utility and equity," Nature Human Behaviour, Nature, vol. 6(11), pages 1503-1514, November.
    16. Simin Zou & Xuhui He, 2021. "Effect of Train-Induced Wind on the Transmission of COVID-19: A New Insight into Potential Infectious Risks," IJERPH, MDPI, vol. 18(15), pages 1-17, August.
    17. Fang, Hanming & Wang, Long & Yang, Yang, 2020. "Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China," Journal of Public Economics, Elsevier, vol. 191(C).
    18. Shi, Wei & Qiu, Yun & Yu, Pei & Chen, Xi, 2022. "Optimal Travel Restrictions in Epidemics," IZA Discussion Papers 15290, Institute of Labor Economics (IZA).
    19. Liu, Ning & Chen, Zhuo & Bao, Guoxian, 2021. "Role of media coverage in mitigating COVID-19 transmission: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    20. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.05189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.