IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.01579.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Indirect inference through prediction

Author

Listed:
  • Ernesto Carrella
  • Richard M. Bailey
  • Jens Koed Madsen

Abstract

By recasting indirect inference estimation as a prediction rather than a minimization and by using regularized regressions, we can bypass the three major problems of estimation: selecting the summary statistics, defining the distance function and minimizing it numerically. By substituting regression with classification we can extend this approach to model selection as well. We present three examples: a statistical fit, the parametrization of a simple real business cycle model and heuristics selection in a fishery agent-based model. The outcome is a method that automatically chooses summary statistics, weighs them and use them to parametrize models without running any direct minimization.

Suggested Citation

  • Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
  • Handle: RePEc:arx:papers:1807.01579
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.01579
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. repec:spo:wpmain:info:hdl:2441/5fafm6me7k8omq5jbo61urqq27 is not listed on IDEAS
    3. Sylvain Barde, 2017. "A Practical, Accurate, Information Criterion for Nth Order Markov Processes," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 281-324, August.
    4. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    5. Isabelle Salle & Murat Yıldızoğlu, 2014. "Efficient Sampling and Meta-Modeling for Computational Economic Models," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 507-536, December.
    6. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    7. Henningsen, Arne & Hamann, Jeff D., 2007. "systemfit: A Package for Estimating Systems of Simultaneous Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i04).
    8. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    9. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    10. Vo Le & David Meenagh & Patrick Minford & Michael Wickens & Yongdeng Xu, 2016. "Testing Macro Models by Indirect Inference: A Survey for Users," Open Economies Review, Springer, vol. 27(1), pages 1-38, February.
    11. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    12. repec:hal:spmain:info:hdl:2441/5fafm6me7k8omq5jbo61urqq27 is not listed on IDEAS
    13. Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carrella, Ernesto & Saul, Steven & Marshall, Kristin & Burgess, Matthew G. & Cabral, Reniel B. & Bailey, Richard M. & Dorsett, Chris & Drexler, Michael & Madsen, Jens Koed & Merkl, Andreas, 2020. "Simple Adaptive Rules Describe Fishing Behaviour Better than Perfect Rationality in the US West Coast Groundfish Fishery," Ecological Economics, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    3. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    4. Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    5. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    6. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    7. Seri, Raffaello & Martinoli, Mario & Secchi, Davide & Centorrino, Samuele, 2021. "Model calibration and validation via confidence sets," Econometrics and Statistics, Elsevier, vol. 20(C), pages 62-86.
    8. Siyan Chen & Saul Desiderio, 2022. "Calibration of Agent-Based Models by Means of Meta-Modeling and Nonparametric Regression," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1457-1478, December.
    9. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    10. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    11. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    12. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    13. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2020. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," LEM Papers Series 2020/31, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Siyan Chen & Saul Desiderio, 2022. "A Regression-Based Calibration Method for Agent-Based Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 687-700, February.
    15. Vandin, Andrea & Giachini, Daniele & Lamperti, Francesco & Chiaromonte, Francesca, 2022. "Automated and distributed statistical analysis of economic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    16. Sander Hoog, 2019. "Surrogate Modelling in (and of) Agent-Based Models: A Prospectus," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1245-1263, March.
    17. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    18. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2021. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," Papers 2102.05405, arXiv.org, revised Nov 2023.
    19. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    20. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    21. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.01579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.