Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this paperIndirect inference through prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018.
"Agent-based model calibration using machine learning surrogates,"
Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Sciences Po publications 2017-09, Sciences Po.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Papers 1703.10639, arXiv.org, revised Apr 2017.
- Frencesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-based model calibration using machine learning surrogates," Documents de Travail de l'OFCE 2017-09, Observatoire Francais des Conjonctures Economiques (OFCE).
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," LEM Papers Series 2017/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-03458875, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," SciencePo Working papers Main hal-01499344, HAL.
- repec:spo:wpmain:info:hdl:2441/5fafm6me7k8omq5jbo61urqq27 is not listed on IDEAS
- Sylvain Barde, 2017.
"A Practical, Accurate, Information Criterion for Nth Order Markov Processes,"
Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 281-324, August.
- Sylvain Barde, 2017. "A Practical, Accurate, Information Criterion for Nth Order Markov Processes," Sciences Po publications info:hdl:2441/5fafm6me7k8, Sciences Po.
- Sylvain Barde, 2017. "A Practical, Accurate, Information Criterion for Nth Order Markov Processes," SciencePo Working papers Main hal-03471817, HAL.
- Sylvain Barde, 2017. "A Practical, Accurate, Information Criterion for Nth Order Markov Processes," Post-Print hal-03471817, HAL.
- Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006.
"A Common Protocol for Agent-Based Social Simulation,"
Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
- Roberto Leombruni & Matteo Richiardi & Nicole J. Saam & Michele Sonnessa, 2005. "A Common Protocol for Agent-Based Social Simulation," LABORatorio R. Revelli Working Papers Series 47, LABORatorio R. Revelli, Centre for Employment Studies.
- Isabelle Salle & Murat Yıldızoğlu, 2014.
"Efficient Sampling and Meta-Modeling for Computational Economic Models,"
Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 507-536, December.
- Murat YILDIZOGLU & Isabelle SALLE, 2012. "Efficient Sampling and Metamodeling for Computational Economic Models," Cahiers du GREThA (2007-2019) 2012-18, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
- Isabelle Salle & Murat Yildizoglu, 2014. "Efficient Sampling and Metamodeling for Computational Economic Models," Post-Print hal-01135640, HAL.
- Isabelle Salle & Murat Yildizoglu, 2012. "Efficient sampling and metamodeling for computation economic models," Post-Print hal-00779046, HAL.
- McFadden, Daniel, 1989.
"A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration,"
Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
- Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
- Henningsen, Arne & Hamann, Jeff D., 2007. "systemfit: A Package for Estimating Systems of Simultaneous Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i04).
- Grazzini, Jakob & Richiardi, Matteo, 2015.
"Estimation of ergodic agent-based models by simulated minimum distance,"
Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
- Jakob Grazzini & Matteo Richiardi, 2014. "Estimation of Ergodic Agent-Based Models by Simulated Minimum Distance," Economics Papers 2014-W07, Economics Group, Nuffield College, University of Oxford.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Vo Le & David Meenagh & Patrick Minford & Michael Wickens & Yongdeng Xu, 2016.
"Testing Macro Models by Indirect Inference: A Survey for Users,"
Open Economies Review, Springer, vol. 27(1), pages 1-38, February.
- Minford, Patrick & Wickens, Michael R. & Meenagh, David & Le, Vo Phuong Mai & Xu, Yongdeng, 2015. "Testing macro models by indirect inference: a survey for users," CEPR Discussion Papers 10766, C.E.P.R. Discussion Papers.
- Le, Vo Phuong Mai & Meenagh, David & Minford, Patrick & Wickens, Michael & Xu, Yongdeng, 2015. "Testing macro models by indirect inference: a survey for users," Cardiff Economics Working Papers E2015/9, Cardiff University, Cardiff Business School, Economics Section.
- Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015.
"The Complexities of Agent-Based Modeling Output Analysis,"
Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
- Lee, Ju-Sung & Filatova, Tatiana & Ligmann-Zielinska, Arika & Hassani-Mahmooei, Behrooz & Stonedahl, Forrest & Lorscheid, Iris & Voinov, Alexey & Polhill, J. Gareth & Sun, Zhanli & Parker, Dawn C., 2015. "The complexities of agent-based modeling output analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 18(4).
- repec:hal:spmain:info:hdl:2441/5fafm6me7k8omq5jbo61urqq27 is not listed on IDEAS
- Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carrella, Ernesto & Saul, Steven & Marshall, Kristin & Burgess, Matthew G. & Cabral, Reniel B. & Bailey, Richard M. & Dorsett, Chris & Drexler, Michael & Madsen, Jens Koed & Merkl, Andreas, 2020. "Simple Adaptive Rules Describe Fishing Behaviour Better than Perfect Rationality in the US West Coast Groundfish Fishery," Ecological Economics, Elsevier, vol. 169(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017.
"Validation of Agent-Based Models in Economics and Finance,"
LEM Papers Series
2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2019. "Validation of Agent-Based Models in Economics and Finance," SciencePo Working papers Main halshs-02375423, HAL.
- Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2019. "Validation of Agent-Based Models in Economics and Finance," Post-Print halshs-02375423, HAL.
- Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
- Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
- Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
- Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
- Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Seri, Raffaello & Martinoli, Mario & Secchi, Davide & Centorrino, Samuele, 2021. "Model calibration and validation via confidence sets," Econometrics and Statistics, Elsevier, vol. 20(C), pages 62-86.
- Siyan Chen & Saul Desiderio, 2022. "Calibration of Agent-Based Models by Means of Meta-Modeling and Nonparametric Regression," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1457-1478, December.
- Barde, Sylvain, 2020.
"Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion,"
Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
- Sylvain Barde, 2019. "Macroeconomic simulation comparison with a multivariate extension of the Markov Information Criterion," Studies in Economics 1908, School of Economics, University of Kent.
- Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018.
"Agent-based model calibration using machine learning surrogates,"
Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-03458875, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," SciencePo Working papers Main hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Sciences Po publications 2017-09, Sciences Po.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Papers 1703.10639, arXiv.org, revised Apr 2017.
- Frencesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-based model calibration using machine learning surrogates," Documents de Travail de l'OFCE 2017-09, Observatoire Francais des Conjonctures Economiques (OFCE).
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," LEM Papers Series 2017/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
- Guerini, Mattia & Moneta, Alessio, 2017.
"A method for agent-based models validation,"
Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
- Mattia Guerini & Alessio Moneta, 2016. "A Method for Agent-Based Models Validation," LEM Papers Series 2016/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Mattia Guerini & Alessio Moneta, 2016. "A Method for Agent-Based Models Validation," Working Papers Series 42, Institute for New Economic Thinking.
- Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2020. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," LEM Papers Series 2020/31, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Siyan Chen & Saul Desiderio, 2022. "A Regression-Based Calibration Method for Agent-Based Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 687-700, February.
- Vandin, Andrea & Giachini, Daniele & Lamperti, Francesco & Chiaromonte, Francesca, 2022. "Automated and distributed statistical analysis of economic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Sander Hoog, 2019. "Surrogate Modelling in (and of) Agent-Based Models: A Prospectus," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1245-1263, March.
- Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
- Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2021. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," Papers 2102.05405, arXiv.org, revised Nov 2023.
- Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017.
"Bayesian estimation of agent-based models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
- Jakob Grazzini & Matteo Richiardi & Mike Tsionas, 2015. "Bayesian Estimation of Agent-Based Models," Economics Papers 2015-W12, Economics Group, Nuffield College, University of Oxford.
- Jakob Grazzini & Matteo G. Richiardi & Mike Tsionas, 2015. "Bayesian Estimation of Agent-Based Models," LABORatorio R. Revelli Working Papers Series 145, LABORatorio R. Revelli, Centre for Employment Studies.
- Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
- Delli Gatti, Domenico & Grazzini, Jakob, 2020.
"Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models,"
Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
- Domenico Delli Gatti & Jakob Grazzini, 2019. "Rising to the Challenge: Bayesian Estimation and Forecasting Techniques for Macroeconomic Agent-Based Models," CESifo Working Paper Series 7894, CESifo.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2018-08-13 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.01579. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.