IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.00798.html
   My bibliography  Save this paper

Permutation Tests for Equality of Distributions of Functional Data

Author

Listed:
  • Federico A. Bugni
  • Joel L. Horowitz

Abstract

Economic data are often generated by stochastic processes that take place in continuous time, though observations may occur only at discrete times. For example, electricity and gas consumption take place in continuous time. Data generated by a continuous time stochastic process are called functional data. This paper is concerned with comparing two or more stochastic processes that generate functional data. The data may be produced by a randomized experiment in which there are multiple treatments. The paper presents a method for testing the hypothesis that the same stochastic process generates all the functional data. The test described here applies to both functional data and multiple treatments. It is implemented as a combination of two permutation tests. This ensures that in finite samples, the true and nominal probabilities that each test rejects a correct null hypothesis are equal. The paper presents upper and lower bounds on the asymptotic power of the test under alternative hypotheses. The results of Monte Carlo experiments and an application to an experiment on billing and pricing of natural gas illustrate the usefulness of the test.

Suggested Citation

  • Federico A. Bugni & Joel L. Horowitz, 2018. "Permutation Tests for Equality of Distributions of Functional Data," Papers 1803.00798, arXiv.org, revised Jun 2021.
  • Handle: RePEc:arx:papers:1803.00798
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.00798
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Federico A. Bugni & Peter Hall & Joel L. Horowitz & George R. Neumann, 2009. "Goodness-of-fit tests for functional data," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 1-18, January.
    2. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(2), pages 426-468, April.
    3. Nava Ashraf & Erica Field & Jean Lee, 2014. "Household Bargaining and Excess Fertility: An Experimental Study in Zambia," American Economic Review, American Economic Association, vol. 104(7), pages 2210-2237, July.
    4. Kim, Myung Suk & Wang, Suojin, 2006. "Sizes of two bootstrap-based nonparametric specification tests for the drift function in continuous time models," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1793-1806, April.
    5. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    6. Cuesta-Albertos, J.A. & del Barrio, E. & Fraiman, R. & Matran, C., 2007. "The random projection method in goodness of fit for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4814-4831, June.
    7. Erica Field & Seema Jayachandran & Rohini Pande & Natalia Rigol, 2016. "Friendship at Work: Can Peer Effects Catalyze Female Entrepreneurship?," American Economic Journal: Economic Policy, American Economic Association, vol. 8(2), pages 125-153, May.
    8. Matthew Harding & Carlos Lamarche, 2016. "Empowering Consumers Through Data and Smart Technology: Experimental Evidence on the Consequences of Time‐of‐Use Electricity Pricing Policies," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 35(4), pages 906-931, September.
    9. Alberto Chong & Isabelle Cohen & Erica Field & Eduardo Nakasone & Maximo Torero, 2016. "Iron Deficiency and Schooling Attainment in Peru," American Economic Journal: Applied Economics, American Economic Association, vol. 8(4), pages 222-255, October.
    10. Chung, EunYi & Romano, Joseph P., 2016. "Multivariate and multiple permutation tests," Journal of Econometrics, Elsevier, vol. 193(1), pages 76-91.
    11. Peter Hall, 2002. "Permutation tests for equality of distributions in high-dimensional settings," Biometrika, Biometrika Trust, vol. 89(2), pages 359-374, June.
    12. Colin B. Fogarty, 2020. "Studentized Sensitivity Analysis for the Sample Average Treatment Effect in Paired Observational Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1518-1530, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González–Rodríguez, Gil & Colubi, Ana & González–Manteiga, Wenceslao & Febrero–Bande, Manuel, 2024. "A consistent test of equality of distributions for Hilbert-valued random elements," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    2. Marc Ditzhaus & Daniel Gaigall, 2022. "Testing marginal homogeneity in Hilbert spaces with applications to stock market returns," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 749-770, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Ditzhaus & Daniel Gaigall, 2022. "Testing marginal homogeneity in Hilbert spaces with applications to stock market returns," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 749-770, September.
    2. S Anukriti & Catalina Herrera‐Almanza & Praveen K. Pathak & Mahesh Karra, 2020. "Curse of the Mummy‐ji: The Influence of Mothers‐in‐Law on Women in India†," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1328-1351, October.
    3. Lnu,Anukriti & Herrera-Almanza,Catalina & Karra,Mahesh Venkat, 2022. "Bring a Friend : Strengthening Women’s Social Networks and Reproductive Autonomy in India," Policy Research Working Paper Series 10107, The World Bank.
    4. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    5. Alison Andrew & Sonya Krutikova & Gabriela Smarrelli & Hemlata Verma, 2022. "Gender norms, violence and adolescent girls' trajectories: evidence from a field experiment in India," Economics Series Working Papers 984, University of Oxford, Department of Economics.
    6. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    7. Peter L. Cohen & Colin B. Fogarty, 2022. "Gaussian prepivoting for finite population causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 295-320, April.
    8. Alison Andrew & Sonya Krutikova & Gabriela Smarrelli & Hemlata Verma, 2022. "Gender norms, violence and adolescent girls’ trajectories: evidence from a field experiment in India," IFS Working Papers W22/41, Institute for Fiscal Studies.
    9. Katrina Kosec & Kamiljon Akramov & Bakhrom Mirkasimov & Jie Song & Hongdi Zhao, 2022. "Aspirations and women's empowerment: Evidence from Kyrgyzstan," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 30(1), pages 101-134, January.
    10. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2024. "Testing equality of several distributions in separable metric spaces: A maximum mean discrepancy based approach," Journal of Econometrics, Elsevier, vol. 239(2).
    11. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    12. Yao Yao, 2022. "Fertility and HIV Risk in Africa," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 109-133, July.
    13. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    14. Teresa Molina Millán & Karen Macours, 2017. "Attrition in randomized control trials: Using tracking information to correct bias," FEUNL Working Paper Series novaf:wp1702, Universidade Nova de Lisboa, Faculdade de Economia.
    15. Chen, Yi & Zhao, Yi, 2022. "The timing of first marriage and subsequent life outcomes: Evidence from a natural experiment," Journal of Comparative Economics, Elsevier, vol. 50(3), pages 713-731.
    16. Thomas Baudin & David de la Croix & Paula Gobbi, 2020. "Endogenous Childlessness and Stages of Development," Journal of the European Economic Association, European Economic Association, vol. 18(1), pages 83-133.
    17. Banerjee, Abhijit & Barnhardt, Sharon & Duflo, Esther, 2018. "Can iron-fortified salt control anemia? Evidence from two experiments in rural Bihar," Journal of Development Economics, Elsevier, vol. 133(C), pages 127-146.
    18. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.
    19. Sztemberg-Lewandowska Mirosława, 2019. "Functional Principal Components Analysis on the Exemple of the Achievements of Students in the Years 2009-2017," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(4), pages 16-29, December.
    20. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.00798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.