IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1704.05332.html
   My bibliography  Save this paper

The case of 'Less is more': Modelling risk-preference with Expected Downside Risk

Author

Listed:
  • Mihaly Ormos
  • Dusan Timotity

Abstract

This paper discusses an alternative explanation for the empirical findings contradicting the positive relationship between risk (variance) and reward (expected return). We show that these contradicting results might be due to the false definition of risk-perception, which we correct by introducing Expected Downside Risk (EDR). The EDR parameter, similar to the Expected Shortfall or Conditional Value-at-Risk, measures the tail risk, however, fits and better explains the utility perception of investors. Our results indicate that when using the EDR as risk measure, both the positive and negative relationship between expected return and risk can be derived under standard conditions (e.g. expected utility theory and positive risk-aversion). Therefore, no alternative psychological explanation or additional boundary condition on utility theory is required to explain the phenomenon. Furthermore, we show empirically that it is a more precise linear predictor of expected return than volatility, both for individual assets and portfolios.

Suggested Citation

  • Mihaly Ormos & Dusan Timotity, 2017. "The case of 'Less is more': Modelling risk-preference with Expected Downside Risk," Papers 1704.05332, arXiv.org.
  • Handle: RePEc:arx:papers:1704.05332
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1704.05332
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sun, Qian & Yan, Yuxing, 2003. "Skewness persistence with optimal portfolio selection," Journal of Banking & Finance, Elsevier, vol. 27(6), pages 1111-1121, June.
    2. Cheng, Louis T.W. & Leung, T.Y. & Yu, Wayne, 2014. "Information arrival, changes in R-square and pricing asymmetry of corporate news," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 67-81.
    3. Post, Thierry & van Vliet, Pim & Levy, Haim, 2008. "Risk aversion and skewness preference," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1178-1187, July.
    4. Campbell, Rachel & Huisman, Ronald & Koedijk, Kees, 2001. "Optimal portfolio selection in a Value-at-Risk framework," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1789-1804, September.
    5. Csoka, Peter & Herings, P. Jean-Jacques & Koczy, Laszlo A., 2007. "Coherent measures of risk from a general equilibrium perspective," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2517-2534, August.
    6. Singleton, J. Clay & Wingender, John, 1986. "Skewness Persistence in Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 335-341, September.
    7. Tsai, Hsiu-Jung & Chen, Ming-Chi & Yang, Chih-Yuan, 2014. "A time-varying perspective on the CAPM and downside betas," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 440-454.
    8. Mihaly Ormos & David Zibriczky, 2015. "Entropy-Based Financial Asset Pricing," Papers 1501.01155, arXiv.org.
    9. Mihály Ormos & Dusán Timotity, 2017. "Expected downside risk and asset prices: characteristics of emerging and developed European markets," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(3), pages 529-546, August.
    10. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    11. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    12. Gerd Gigerenzer & Reinhard Selten (ed.), 2002. "Bounded Rationality: The Adaptive Toolbox," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262571641, September.
    13. Ormos, Mihály & Timotity, Dusán, 2016. "Generalized asset pricing: Expected Downside Risk-based equilibrium modeling," Economic Modelling, Elsevier, vol. 52(PB), pages 967-980.
    14. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    15. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    16. Ormos, Mihály & Timotity, Dusan, 2016. "Unravelling the asymmetric volatility puzzle: A novel explanation of volatility through anchoring," Economic Systems, Elsevier, vol. 40(3), pages 345-354.
    17. Robert B. Barsky & F. Thomas Juster & Miles S. Kimball & Matthew D. Shapiro, 1997. "Preference Parameters and Behavioral Heterogeneity: An Experimental Approach in the Health and Retirement Study," The Quarterly Journal of Economics, Oxford University Press, vol. 112(2), pages 537-579.
    18. Thomas Åstebro & José Mata & Luís Santos-Pinto, 2015. "Skewness seeking: risk loving, optimism or overweighting of small probabilities?," Theory and Decision, Springer, vol. 78(2), pages 189-208, February.
    19. Ormos, Mihály & Timotity, Dusán, 2016. "Market microstructure during financial crisis: Dynamics of informed and heuristic-driven trading," Finance Research Letters, Elsevier, vol. 19(C), pages 60-66.
    20. Thierry Post & Haim Levy, 2005. "Does Risk Seeking Drive Stock Prices? A Stochastic Dominance Analysis of Aggregate Investor Preferences and Beliefs," Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 925-953.
    21. Peter Brooks & Simon Peters & Horst Zank, 2014. "Risk behavior for gain, loss, and mixed prospects," Theory and Decision, Springer, vol. 77(2), pages 153-182, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ephraim Clark & Zhuo Qiao & Wing-Keung Wong, 2016. "Theories Of Risk: Testing Investor Behavior On The Taiwan Stock And Stock Index Futures Markets," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 907-924, April.
    2. Leitner Johannes, 2006. "Monetary utility over coherent risk ratios," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-15, July.
    3. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    4. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.
    5. Potì, Valerio & Wang, DengLi, 2010. "The coskewness puzzle," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1827-1838, August.
    6. Clayton Arlen Looney & Andrew M. Hardin, 2009. "Decision Support for Retirement Portfolio Management: Overcoming Myopic Loss Aversion via Technology Design," Management Science, INFORMS, vol. 55(10), pages 1688-1703, October.
    7. Mihály Ormos & Dusán Timotity, 2017. "Expected downside risk and asset prices: characteristics of emerging and developed European markets," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(3), pages 529-546, August.
    8. Colasante, Annarita & Riccetti, Luca, 2020. "Risk aversion, prudence and temperance: It is a matter of gap between moments," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    9. Marie-Hélène Broihanne & Maxime Merli & Patrick Roger, 2006. "Théorie comportementale du portefeuille. Intérêt et limites," Revue économique, Presses de Sciences-Po, vol. 57(2), pages 297-314.
    10. M. Levy, 2010. "Loss aversion and the price of risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 1009-1022.
    11. Ormos, Mihály & Timotity, Dusán, 2016. "Generalized asset pricing: Expected Downside Risk-based equilibrium modeling," Economic Modelling, Elsevier, vol. 52(PB), pages 967-980.
    12. Aigul Mavletova & James Witte, 2017. "Is the willingness to take risks contagious? A comparison of immigrants and native-born in the United States," Journal of Risk Research, Taylor & Francis Journals, vol. 20(7), pages 827-845, July.
    13. Lam, Kin & Lean, Hooi Hooi & Wong, Wing-Keung, 2016. "Stochastic Dominance and Investors’ Behavior towards Risk: The Hong Kong Stocks and Futures Markets," MPRA Paper 74386, University Library of Munich, Germany.
    14. Topaloglou, Nikolas & Tsionas, Mike G., 2020. "Stochastic dominance tests," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    15. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    16. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    17. De Giorgi, Enrico & Hens, Thorsten & Rieger, Marc Oliver, 2010. "Financial market equilibria with cumulative prospect theory," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 633-651, September.
    18. Neszveda, G., 2019. "Essays on behavioral finance," Other publications TiSEM 05059039-5236-42a3-be1b-3, Tilburg University, School of Economics and Management.
    19. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE.
    20. Daniel Gottlieb & Olivia S. Mitchell, 2020. "Narrow Framing and Long‐Term Care Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(4), pages 861-893, December.

    More about this item

    JEL classification:

    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1704.05332. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.