IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1609.00599.html
   My bibliography  Save this paper

Optimal Execution in a Multiplayer Model of Transient Price Impact

Author

Listed:
  • Elias Strehle

Abstract

Trading algorithms that execute large orders are susceptible to exploitation by order anticipation strategies. This paper studies the influence of order anticipation strategies in a multi-investor model of optimal execution under transient price impact. Existence and uniqueness of a Nash equilibrium is established under the assumption that trading incurs quadratic transaction costs. A closed-form representation of the Nash equilibrium is derived for exponential decay kernels. With this representation, it is shown that while order anticipation strategies raise the execution costs of a large order significantly, they typically do not cause price overshooting in the sense of Brunnermeier and Pedersen.

Suggested Citation

  • Elias Strehle, 2016. "Optimal Execution in a Multiplayer Model of Transient Price Impact," Papers 1609.00599, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1609.00599
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1609.00599
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    2. Benos, Evangelos & Sagade, Satchit, 2012. "High-frequency trading behaviour and its impact on market quality: evidence from the UK equity market," Bank of England working papers 469, Bank of England.
    3. Markus K. Brunnermeier & Lasse Heje Pedersen, 2005. "Predatory Trading," Journal of Finance, American Finance Association, vol. 60(4), pages 1825-1863, August.
    4. Gur Huberman & Werner Stanzl, 2005. "Optimal Liquidity Trading," Review of Finance, European Finance Association, vol. 9(2), pages 165-200.
    5. Hasbrouck, Joel & Saar, Gideon, 2013. "Low-latency trading," Journal of Financial Markets, Elsevier, vol. 16(4), pages 646-679.
    6. Aim'e Lachapelle & Jean-Michel Lasry & Charles-Albert Lehalle & Pierre-Louis Lions, 2013. "Efficiency of the Price Formation Process in Presence of High Frequency Participants: a Mean Field Game analysis," Papers 1305.6323, arXiv.org, revised Aug 2015.
    7. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    8. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    9. Gao, Cheng & Mizrach, Bruce, 2016. "Market quality breakdowns in equities," Journal of Financial Markets, Elsevier, vol. 28(C), pages 1-23.
    10. Aur'elien Alfonsi & Alexander Schied, 2012. "Capacitary measures for completely monotone kernels via singular control," Papers 1201.2756, arXiv.org, revised Feb 2013.
    11. Bruce Ian Carlin & Miguel Sousa Lobo & S. Viswanathan, 2007. "Episodic Liquidity Crises: Cooperative and Predatory Trading," Journal of Finance, American Finance Association, vol. 62(5), pages 2235-2274, October.
    12. Aurélien Alfonsi & Alexander Schied, 2013. "Capacitary measures for completely monotone kernels via singular control," Post-Print hal-00659421, HAL.
    13. Alexander Schied & Tao Zhang, 2013. "A state-constrained differential game arising in optimal portfolio liquidation," Papers 1312.7360, arXiv.org, revised Jul 2015.
    14. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    15. Julian Lorenz & Robert Almgren, 2011. "Mean--Variance Optimal Adaptive Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(5), pages 395-422, January.
    16. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitri Vayanos & Jiang Wang, 2012. "Market Liquidity -- Theory and Empirical Evidence," NBER Working Papers 18251, National Bureau of Economic Research, Inc.
    2. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    3. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Schoeneborn, Torsten & Schied, Alexander, 2007. "Liquidation in the Face of Adversity: Stealth Vs. Sunshine Trading, Predatory Trading Vs. Liquidity Provision," MPRA Paper 5548, University Library of Munich, Germany.
    5. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    6. Roman Gayduk & Sergey Nadtochiy, 2015. "Liquidity Effects of Trading Frequency," Papers 1508.07914, arXiv.org, revised May 2017.
    7. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    8. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    9. Samuel N. Cohen & Lukasz Szpruch, 2011. "A limit order book model for latency arbitrage," Papers 1110.4811, arXiv.org.
    10. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    11. Karvik, Geir-Are & Noss, Joseph & Worlidge, Jack & Beale, Daniel, 2018. "The deeds of speed: an agent-based model of market liquidity and flash episodes," Bank of England working papers 743, Bank of England.
    12. Carrion, Allen, 2013. "Very fast money: High-frequency trading on the NASDAQ," Journal of Financial Markets, Elsevier, vol. 16(4), pages 680-711.
    13. Schied, Alexander & Schöneborn, Torsten, 2007. "Optimal Portfolio Liquidation for CARA Investors," MPRA Paper 5075, University Library of Munich, Germany.
    14. van Kervel, V.L., 2013. "Competition between stock exchanges and optimal trading," Other publications TiSEM 5c608a0f-527d-441d-a910-e, Tilburg University, School of Economics and Management.
    15. Peter Kratz & Torsten Schoneborn, 2012. "Portfolio liquidation in dark pools in continuous time," Papers 1201.6130, arXiv.org, revised Aug 2012.
    16. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    17. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2017. "Optimal execution with non-linear transient market impact," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 41-54, January.
    18. Alexander Schied & Elias Strehle & Tao Zhang, 2015. "High-frequency limit of Nash equilibria in a market impact game with transient price impact," Papers 1509.08281, arXiv.org, revised May 2017.
    19. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    20. Christoph Kuhn & Johannes Muhle-Karbe, 2013. "Optimal Liquidity Provision," Papers 1309.5235, arXiv.org, revised Feb 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1609.00599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.