IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1604.05406.html
   My bibliography  Save this paper

Gap Risk KVA and Repo Pricing: An Economic Capital Approach in the Black-Scholes-Merton Framework

Author

Listed:
  • Wujiang Lou

Abstract

Although not a formal pricing consideration, gap risk or hedging errors are the norm of derivatives businesses. Starting with the gap risk during a margin period of risk of a repurchase agreement (repo), this article extends the Black-Scholes-Merton option pricing framework by introducing a reserve capital approach to the hedging error's irreducible variability. An extended partial differential equation is derived with two new terms for expected gap loss and economic capital charge, leading to the gap risk economic value adjustment and capital valuation adjustment (KVA) respectively. Practical repo pricing formulae is obtained showing that the break-even repo rate decomposes into cost of fund and economic capital charge in KVA. At zero haircut, a one-year term repo on main equities could command a capital charge as large as 50 basis points for a 'BBB' rated borrower.

Suggested Citation

  • Wujiang Lou, 2016. "Gap Risk KVA and Repo Pricing: An Economic Capital Approach in the Black-Scholes-Merton Framework," Papers 1604.05406, arXiv.org, revised Oct 2016.
  • Handle: RePEc:arx:papers:1604.05406
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1604.05406
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Wujiang Lou, 2015. "Liability-side Pricing of Swaps and Coherent CVA and FVA by Regression/Simulation," Papers 1512.07340, arXiv.org.
    3. Wujiang Lou, 2015. "Coherent CVA and FVA with Liability Side Pricing of Derivatives," Papers 1510.07199, arXiv.org.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Andrew Green & Chris Kenyon, 2014. "KVA: Capital Valuation Adjustment," Papers 1405.0515, arXiv.org, revised Oct 2014.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    2. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    4. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    5. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    6. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    7. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    8. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    10. Yishen Li & Jin Zhang, 2004. "Option pricing with Weyl-Titchmarsh theory," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 457-464.
    11. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    12. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    13. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    14. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    15. Chen, Andrew H., 2002. "A new perspective on infrastructure financing in Asia," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 227-242, June.
    16. Yan Liu & Xiong Zhang, 2023. "Option Pricing Using LSTM: A Perspective of Realized Skewness," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    17. Bruno Deffains & Marie Obidzinski, 2009. "Real Options Theory for Law Makers," Recherches économiques de Louvain, De Boeck Université, vol. 75(1), pages 93-117.
    18. Casper Boongaling Agaton, 2022. "Will a Geopolitical Conflict Accelerate Energy Transition in Oil-Importing Countries? A Case Study of the Philippines from a Real Options Perspective," Resources, MDPI, vol. 11(6), pages 1-17, June.
    19. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.
    20. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1604.05406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.