IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1603.05181.html
   My bibliography  Save this paper

Strength of weak layers in cascading failures on multiplex networks: case of the international trade network

Author

Listed:
  • Kyu-Min Lee
  • Kwang-Il Goh

Abstract

Many real-world complex systems across natural, social, and economical domains consist of manifold layers to form multiplex networks. The multiple network layers give rise to nonlinear effect for the emergent dynamics of systems. Especially, weak layers that can potentially play significant role in amplifying the vulnerability of multiplex networks might be shadowed in the aggregated single-layer network framework which indiscriminately accumulates all layers. Here we present a simple model of cascading failure on multiplex networks of weight-heterogeneous layers. By simulating the model on the multiplex network of international trades, we found that the multiplex model produces more catastrophic cascading failures which are the result of emergent collective effect of coupling layers, rather than the simple sum thereof. Therefore risks can be systematically underestimated in single-layer network analyses because the impact of weak layers can be overlooked. We anticipate that our simple theoretical study can contribute to further investigation and design of optimal risk-averse real-world complex systems.

Suggested Citation

  • Kyu-Min Lee & Kwang-Il Goh, 2016. "Strength of weak layers in cascading failures on multiplex networks: case of the international trade network," Papers 1603.05181, arXiv.org, revised May 2016.
  • Handle: RePEc:arx:papers:1603.05181
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1603.05181
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matteo Barigozzi & Giorgio Fagiolo & Diego Garlaschelli, 2009. "Multinetwork of international trade: A commodity-specific analysis," Papers 0908.1879, arXiv.org, revised Jun 2010.
    2. Kyu-Min Lee & Jae-Suk Yang & Gunn Kim & Jaesung Lee & Kwang-Il Goh & In-mook Kim, 2011. "Impact of the Topology of Global Macroeconomic Network on the Spreading of Economic Crises," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    3. A. Garas & P. Argyrakis & S. Havlin, 2008. "The structural role of weak and strong links in a financial market network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(2), pages 265-271, May.
    4. Rahul Kaushik & Stefano Battiston, 2013. "Credit Default Swaps Drawup Networks: Too Interconnected to Be Stable?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    5. Antonios Garas & Panos Argyrakis & Shlomo Havlin, 2008. "The structural role of weak and strong links in a financial market network," Papers 0805.2477, arXiv.org.
    6. Min, Byungjoon & Lee, Sangchul & Lee, Kyu-Min & Goh, K.-I., 2015. "Link overlap, viability, and mutual percolation in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 49-58.
    7. Paolo Tasca & Stefano Battiston, "undated". "Diversification and Financial Stability," Working Papers CCSS-11-001, ETH Zurich, Chair of Systems Design.
    8. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    9. Kyu-Min Lee & Jae-Suk Yang & Gunn Kim & Jaesung Lee & Kwang-Il Goh & In-mook Kim, 2010. "Impact of the topology of global macroeconomic network on the spreading of economic crises," Papers 1011.4336, arXiv.org, revised Apr 2011.
    10. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    11. Stefan Thurner & Sebastian Poledna, 2013. "DebtRank-transparency: Controlling systemic risk in financial networks," Papers 1301.6115, arXiv.org.
    12. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    13. Battiston, Stefano & Gatti, Domenico Delli & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Default cascades: When does risk diversification increase stability?," Journal of Financial Stability, Elsevier, vol. 8(3), pages 138-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xuanru & Zhang, Hua & Zheng, Shuxian & Xing, Wanli & Yang, Hanshi & Zhao, Yifan, 2023. "A study on the transmission of trade behavior of global nickel products from the perspective of the industrial chain," Resources Policy, Elsevier, vol. 81(C).
    2. Shi, Qing & Sun, Xiaoqi & Xu, Man & Wang, Mengjiao, 2022. "The multiplex network structure of global cobalt industry chain," Resources Policy, Elsevier, vol. 76(C).
    3. Kang, Xinyu & Wang, Minxi & Chen, Lu & Li, Xin, 2023. "Supply risk propagation of global copper industry chain based on multi-layer complex network," Resources Policy, Elsevier, vol. 85(PA).
    4. Shao, Liuguo & Kou, Wenwen & Zhang, Hua, 2022. "The evolution of the global cobalt and lithium trade pattern and the impacts of the low-cobalt technology of lithium batteries based on multiplex network," Resources Policy, Elsevier, vol. 76(C).
    5. Hu, Xiaoqian & Wang, Chao & Lim, Ming K. & Chen, Wei-Qiang, 2020. "Characteristics of the global copper raw materials and scrap trade systems and the policy impacts of China's import ban," Ecological Economics, Elsevier, vol. 172(C).
    6. Wang, Xingxing & Wang, Anjian & Zhong, Weiqiong & Zhu, Depeng & Wang, Chunhui, 2022. "Analysis of international nickel flow based on the industrial chain," Resources Policy, Elsevier, vol. 77(C).
    7. Hao, Hongchang & Ma, Zhe & Wang, Anjian & Xing, Wanli & Song, Hao & Zhao, Pei & Wei, Jiangqiao & Zheng, Shuxian, 2023. "Modeling and assessing the robustness of the lithium global trade system against cascading failures," Resources Policy, Elsevier, vol. 85(PB).
    8. Kiran Sharma & Anindya S. Chakrabarti & Anirban Chakraborti, 2018. "Multi-layered Network Structure: Relationship Between Financial and Macroeconomic Dynamics," Papers 1805.06829, arXiv.org, revised Mar 2019.
    9. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna & Luu, Duc Thi, 2022. "The multilayer architecture of the global input-output network and its properties," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 304-341.
    10. Hector Tzavellas, 2023. "A Multilayer View Of Systemic Importance And Aggregate Fluctuations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1023-1046, August.
    11. Wang, Chao & Huang, Xia & Hu, Xiaoqian & Zhao, Longfeng & Liu, Chao & Ghadimi, Pezhman, 2021. "Trade characteristics, competition patterns and COVID-19 related shock propagation in the global solar photovoltaic cell trade," Applied Energy, Elsevier, vol. 290(C).
    12. Javier Garcia-Bernardo & Jan Fichtner & Eelke M. Heemskerk & Frank W. Takes, 2017. "Uncovering Offshore Financial Centers: Conduits and Sinks in the Global Corporate Ownership Network," Papers 1703.03016, arXiv.org, revised May 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    2. León, C., 2015. "Financial stability from a network perspective," Other publications TiSEM bb2e4e44-e842-45c6-a946-4, Tilburg University, School of Economics and Management.
    3. Andre R. Neveu, 2018. "A survey of network-based analysis and systemic risk measurement," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 241-281, July.
    4. Aymeric Vié & Alfredo J. Morales, 2021. "How Connected is Too Connected? Impact of Network Topology on Systemic Risk and Collapse of Complex Economic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1327-1351, April.
    5. Paolo Bartesaghi & Michele Benzi & Gian Paolo Clemente & Rosanna Grassi & Ernesto Estrada, 2019. "Risk-dependent centrality in economic and financial networks," Papers 1907.07908, arXiv.org, revised Apr 2020.
    6. Rahul Kaushik & Stefano Battiston, 2013. "Credit Default Swaps Drawup Networks: Too Interconnected to Be Stable?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    7. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    8. Leonidas Sandoval Junior, 2014. "Dynamics in two networks based on stocks of the US stock market," Papers 1408.1728, arXiv.org, revised Aug 2014.
    9. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    10. Fariba Karimi & Matthias Raddant, 2016. "Cascades in Real Interbank Markets," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 49-66, January.
    11. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2016. "Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    12. Berardi, Simone & Tedeschi, Gabriele, 2017. "From banks' strategies to financial (in)stability," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 255-272.
    13. Rüdiger Frey & Juraj Hledik, 2018. "Diversification and Systemic Risk: A Financial Network Perspective," Risks, MDPI, vol. 6(2), pages 1-11, May.
    14. Lee, Kyu-Min & Lee, Sungmin & Min, Byungjoon & Goh, K.-I., 2023. "Threshold cascade dynamics on signed random networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Co-Pierre Georg & Stefano Battiston & Tarik Roukny, 2014. "A Network Analysis of the Evolution of the German Interbank Market," Working Papers 461, Economic Research Southern Africa.
    16. Brini, Alessio & Tedeschi, Gabriele & Tantari, Daniele, 2023. "Reinforcement learning policy recommendation for interbank network stability," Journal of Financial Stability, Elsevier, vol. 67(C).
    17. Fagiolo, Giorgio & Santoni, Gianluca, 2015. "Human-mobility networks, country income, and labor productivity," Network Science, Cambridge University Press, vol. 3(3), pages 377-407, September.
    18. León, Carlos & Machado, Clara & Sarmiento, Miguel, 2018. "Identifying central bank liquidity super-spreaders in interbank funds networks," Journal of Financial Stability, Elsevier, vol. 35(C), pages 75-92.
    19. Yang Xu, 2017. "Intervention On Default Contagion Under Partial Information," Papers 1710.02127, arXiv.org.
    20. João Barata Ribeiro Blanco Barroso & Thiago Christiano Silva & Sergio Rubens Stancato de Souza, 2016. "Decomposition of Systemic Risk Drivers in Evolving Financial Networks," Working Papers Series 448, Central Bank of Brazil, Research Department.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1603.05181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.