IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1506.06979.html
   My bibliography  Save this paper

Intrinsic Storage Valuation by Variational Analysis

Author

Listed:
  • Dmitry Lesnik

Abstract

The mathematical problem concerning intrinsic storage optimisation is formulated and solved by means of variational analysis. The solution, though obtained in implicit form, still sheds light on many important features of the optimal exercise strategy. It is shown how the solution depends on different constraint types including carry cost and cycle constraint. Additionally, the relationship between intrinsic and stochastic solutions is investigated. In particular, we show that the optimal stochastic exercise decision is always close to the intrinsic one.

Suggested Citation

  • Dmitry Lesnik, 2015. "Intrinsic Storage Valuation by Variational Analysis," Papers 1506.06979, arXiv.org.
  • Handle: RePEc:arx:papers:1506.06979
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1506.06979
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schwartz, Eduardo, 1998. "Valuing long-term commodity assets," Journal of Energy Finance & Development, Elsevier, vol. 3(2), pages 85-99.
    2. Eduardo S. Schwartz, 1998. "Valuing Long-Term Commodity Assets," Financial Management, Financial Management Association, vol. 27(1), Spring.
    3. repec:cdl:anderf:qt43n1k4jb is not listed on IDEAS
    4. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    5. Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savolainen, Jyrki, 2016. "Real options in metal mining project valuation: Review of literature," Resources Policy, Elsevier, vol. 50(C), pages 49-65.
    2. Hahn, Warren J. & Dyer, James S., 2008. "Discrete time modeling of mean-reverting stochastic processes for real option valuation," European Journal of Operational Research, Elsevier, vol. 184(2), pages 534-548, January.
    3. Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.
    4. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    5. Insley, M.C. & Wirjanto, T.S., 2010. "Contrasting two approaches in real options valuation: Contingent claims versus dynamic programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 157-176, April.
    6. Hanfeld, Marc & Schlüter, Stephan, 2016. "Operating a swing option on today's gas markets: How least squares Monte Carlo works and why it is beneficial," FAU Discussion Papers in Economics 10/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Jongwoo Lee & Dean Paxson, 2003. "Confined exponential approximations for the valuation of American options," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 449-474.
    8. Takashi Kato & Jun Sekine & Hiromitsu Yamamoto, 2014. "A One-Factor Conditionally Linear Commodity Pricing Model under Partial Information," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 151-174, May.
    9. Mikael Collan & Jyrki Savolainen & Pasi Luukka, 2017. "Investigating the effect of price process selection on the value of a metal mining asset portfolio," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(2), pages 107-115, July.
    10. Siddiqui, Afzal & Fleten, Stein-Erik, 2010. "How to proceed with competing alternative energy technologies: A real options analysis," Energy Economics, Elsevier, vol. 32(4), pages 817-830, July.
    11. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    12. Zambujal-Oliveira, João & Mouta-Lopes, Manuel & Bangueses, Ricardo, 2021. "Real options appraisal of forestry investments under information scarcity in biomass markets," Resources Policy, Elsevier, vol. 74(C).
    13. Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.
    14. Marcos Escobar & Luis Seco, 2012. "Residual Model for Future Prices," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 1(2), pages 110-119, October.
    15. Lander, Diane M. & Pinches, George E., 1998. "Challenges to the Practical Implementation of Modeling and Valuing Real Options," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 537-567.
    16. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    17. Delphine Lautier & Yves Simon, 2004. "La volatilité des prix des matières premières," Revue d'Économie Financière, Programme National Persée, vol. 74(1), pages 45-84.
    18. Barbosa, Luciana & Nunes, Cláudia & Rodrigues, Artur & Sardinha, Alberto, 2020. "Feed-in tariff contract schemes and regulatory uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 331-347.
    19. Scarcioffolo, Alexandre Ribeiro & Perobelli, Fernanda Finotti Cordeiro & Chimeli, Ariaster Baumgratz, 2018. "Counterfactual comparisons of investment options for wind power and agricultural production in the United States: Lessons from Northern Ohio," Energy Economics, Elsevier, vol. 74(C), pages 299-309.
    20. Lingfei Li & Vadim Linetsky, 2013. "Optimal Stopping and Early Exercise: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 61(3), pages 625-643, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1506.06979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.