IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v9y2003i5p449-474.html
   My bibliography  Save this article

Confined exponential approximations for the valuation of American options

Author

Listed:
  • Jongwoo Lee
  • Dean Paxson

Abstract

We provide an alternative analytic approximation for the value of an American option using a confined exponential distribution with tight upper bounds. This is an extension of the Geske and Johnson compound option approach and the Ho et al. exponential extrapolation method. Use of a perpetual American put value, and then a European put with high input volatility is suggested in order to provide a tighter upper bound for an American put price than simply the exercise price. Numerical results show that the new method not only overcomes the deficiencies in existing two-point extrapolation methods for long-term options but also further improves pricing accuracy for short-term options, which may substitute adequately for numerical solutions. As an extension, an analytic approximation is presented for a two-factor American call option.

Suggested Citation

  • Jongwoo Lee & Dean Paxson, 2003. "Confined exponential approximations for the valuation of American options," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 449-474.
  • Handle: RePEc:taf:eurjfi:v:9:y:2003:i:5:p:449-474
    DOI: 10.1080/1351847032000082796
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/1351847032000082796
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847032000082796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blomeyer, Edward C. & Johnson, Herb, 1988. "An Empirical Examination of the Pricing of American Put Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 13-22, March.
    2. Schwartz, Eduardo, 1998. "Valuing long-term commodity assets," Journal of Energy Finance & Development, Elsevier, vol. 3(2), pages 85-99.
    3. Jing-Zhi Huang & Marti G. Subrahmanyam & G. George Yu, 1999. "Pricing And Hedging American Options: A Recursive Integration Method," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 8, pages 219-239, World Scientific Publishing Co. Pte. Ltd..
    4. Bunch, David S & Johnson, Herb, 1992. "A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach," Journal of Finance, American Finance Association, vol. 47(2), pages 809-816, June.
    5. Eduardo S. Schwartz, 1998. "Valuing Long-Term Commodity Assets," Financial Management, Financial Management Association, vol. 27(1), Spring.
    6. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    7. Bjerksund, Petter & Stensland, Gunnar, 1993. "Closed-form approximation of American options," Scandinavian Journal of Management, Elsevier, vol. 9(Supplemen), pages 87-99.
    8. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    9. Geske, Robert & Johnson, Herb E, 1984. "The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    10. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. "Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Hirsa, Ali & Neftci, Salih N., 2013. "An Introduction to the Mathematics of Financial Derivatives," Elsevier Monographs, Elsevier, edition 3, number 9780123846822.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jyh-Bang Jou & Tan (Charlene) Lee, 2011. "Mutually exclusive investment with technical uncertainty," Applied Economics, Taylor & Francis Journals, vol. 43(30), pages 4723-4728.
    2. Jou, Jyh-Bang & Lee, Tan (Charlene), 2016. "How does statutory redemption affect a buyer's decision at the foreclosure sale?," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 263-272.
    3. Cassimon, D. & Engelen, P.J. & Thomassen, L. & Van Wouwe, M., 2007. "Closed-form valuation of American call options on stocks paying multiple dividends," Finance Research Letters, Elsevier, vol. 4(1), pages 33-48, March.
    4. Cristina Viegas & José Azevedo-Pereira, 2020. "A Quasi-Closed-Form Solution for the Valuation of American Put Options," IJFS, MDPI, vol. 8(4), pages 1-16, October.
    5. Dean Paxson, 2007. "Sequential American Exchange Property Options," The Journal of Real Estate Finance and Economics, Springer, vol. 34(1), pages 135-157, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    2. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    5. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    6. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    7. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    8. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    9. D. J. Manuge & P. T. Kim, 2014. "A fast Fourier transform method for Mellin-type option pricing," Papers 1403.3756, arXiv.org, revised Mar 2014.
    10. San–Lin Chung & Mark B. Shackleton, 2007. "Generalised Geske‐‐Johnson Interpolation of Option Prices," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 34(5‐6), pages 976-1001, June.
    11. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
    12. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    13. Fabozzi, Frank J. & Paletta, Tommaso & Stanescu, Silvia & Tunaru, Radu, 2016. "An improved method for pricing and hedging long dated American options," European Journal of Operational Research, Elsevier, vol. 254(2), pages 656-666.
    14. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    15. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    16. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    17. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    18. Denis Veliu & Roberto De Marchis & Mario Marino & Antonio Luciano Martire, 2022. "An Alternative Numerical Scheme to Approximate the Early Exercise Boundary of American Options," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
    19. Cristina Viegas & José Azevedo-Pereira, 2020. "A Quasi-Closed-Form Solution for the Valuation of American Put Options," IJFS, MDPI, vol. 8(4), pages 1-16, October.
    20. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:9:y:2003:i:5:p:449-474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.