IDEAS home Printed from
   My bibliography  Save this paper

Gambling in contests with random initial law


  • Han Feng
  • David Hobson


This paper studies a variant of the contest model introduced in Seel and Strack [J. Econom. Theory 148 (2013) 2033-2048]. In the Seel-Strack contest, each agent or contestant privately observes a Brownian motion, absorbed at zero, and chooses when to stop it. The winner of the contest is the agent who stops at the highest value. The model assumes that all the processes start from a common value $x_0>0$ and the symmetric Nash equilibrium is for each agent to utilise a stopping rule which yields a randomised value for the stopped process. In the two-player contest, this randomised value has a uniform distribution on $[0,2x_0]$. In this paper, we consider a variant of the problem whereby the starting values of the Brownian motions are independent, nonnegative random variables that have a common law $\mu$. We consider a two-player contest and prove the existence and uniqueness of a symmetric Nash equilibrium for the problem. The solution is that each agent should aim for the target law $\nu$, where $\nu$ is greater than or equal to $\mu$ in convex order; $\nu$ has an atom at zero of the same size as any atom of $\mu$ at zero, and otherwise is atom free; on $(0,\infty)$ $\nu$ has a decreasing density; and the density of $\nu$ only decreases at points where the convex order constraint is binding.

Suggested Citation

  • Han Feng & David Hobson, 2014. "Gambling in contests with random initial law," Papers 1405.7801,, revised Feb 2016.
  • Handle: RePEc:arx:papers:1405.7801

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Seel, Christian & Strack, Philipp, 2013. "Gambling in contests," Journal of Economic Theory, Elsevier, vol. 148(5), pages 2033-2048.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Christian Seel & Philipp Strack, 2016. "Continuous Time Contests with Private Information," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1093-1107, August.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1405.7801. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.