IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1307.8308.html
   My bibliography  Save this paper

Is it possible to predict long-term success with k-NN? Case Study of four market indices (FTSE100, DAX, HANGSENG, NASDAQ)

Author

Listed:
  • Y. Shi
  • A. N. Gorban
  • T. Y. Yang

Abstract

This case study tests the possibility of prediction for "success" (or "winner") components of four stock & shares market indices in a time period of three years from 02-Jul-2009 to 29-Jun-2012.We compare their performance ain two time frames: initial frame three months at the beginning (02/06/2009-30/09/2009) and the final three month frame (02/04/2012-29/06/2012). To label the components, average price ratio between two time frames in descending order is computed. The average price ratio is defined as the ratio between the mean prices of the beginning and final time period. The "winner" components are referred to the top one third of total components in the same order as average price ratio it means the mean price of final time period is relatively higher than the beginning time period. The "loser" components are referred to the last one third of total components in the same order as they have higher mean prices of beginning time period. We analyse, is there any information about the winner-looser separation in the initial fragments of the daily closing prices log-returns time series. The Leave-One-Out Cross-Validation with k-NN algorithm is applied on the daily log-return of components using a distance and proximity in the experiment. By looking at the error analysis, it shows that for HANGSENG and DAX index, there are clear signs of possibility to evaluate the probability of long-term success. The correlation distance matrix histograms and 2-D/3-D elastic maps generated from ViDaExpert show that the winner components are closer to each other and winner/loser components are separable on elastic maps for HANGSENG and DAX index while for the negative possibility indices, there is no sign of separation.

Suggested Citation

  • Y. Shi & A. N. Gorban & T. Y. Yang, 2013. "Is it possible to predict long-term success with k-NN? Case Study of four market indices (FTSE100, DAX, HANGSENG, NASDAQ)," Papers 1307.8308, arXiv.org.
  • Handle: RePEc:arx:papers:1307.8308
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1307.8308
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey, Campbell R, 1995. "Predictable Risk and Returns in Emerging Markets," The Review of Financial Studies, Society for Financial Studies, vol. 8(3), pages 773-816.
    2. A. N. Gorban & E. V. Smirnova & T. A. Tyukina, 2009. "Correlations, Risk and Crisis: From Physiology to Finance," Papers 0905.0129, arXiv.org, revised Aug 2010.
    3. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    4. Fernandez-Rodriguez, Fernando & Sosvilla-Rivero, Simon & Andrada-Felix, Julian, 1999. "Exchange-rate forecasts with simultaneous nearest-neighbour methods: evidence from the EMS," International Journal of Forecasting, Elsevier, vol. 15(4), pages 383-392, October.
    5. M. Deidda & N. Garrido & M. Pulina, 2011. "Exploring the dynamics of the efficiency in the Italian hospitality sector. A regional case study," Working Paper CRENoS 201117, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    6. Curcio, Riccardo, et al, 1997. "Do Technical Trading Rules Generate Profits? Conclusions from the Intra-day Foreign Exchange Market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 267-280, October.
    7. Longin, Francois & Solnik, Bruno, 1995. "Is the correlation in international equity returns constant: 1960-1990?," Journal of International Money and Finance, Elsevier, vol. 14(1), pages 3-26, February.
    8. Meredith Beechey & David Gruen & James Vickery, 2000. "The Efficient Market Hypothesis: A Survey," RBA Research Discussion Papers rdp2000-01, Reserve Bank of Australia.
    9. Dose, Christian & Cincotti, Silvano, 2005. "Clustering of financial time series with application to index and enhanced index tracking portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 145-151.
    10. Gorban, Alexander N. & Smirnova, Elena V. & Tyukina, Tatiana A., 2010. "Correlations, risk and crisis: From physiology to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3193-3217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marshall, Andrew & Maulana, Tubagus & Tang, Leilei, 2009. "The estimation and determinants of emerging market country risk and the dynamic conditional correlation GARCH model," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 250-259, December.
    2. Mohamed El Hedi Arouri & Mondher Bellalah & Duc Khuong Nguyen, 2010. "The comovements in international stock markets: new evidence from Latin American emerging countries," Applied Economics Letters, Taylor & Francis Journals, vol. 17(13), pages 1323-1328.
    3. Li, Hong & Majerowska, Ewa, 2008. "Testing stock market linkages for Poland and Hungary: A multivariate GARCH approach," Research in International Business and Finance, Elsevier, vol. 22(3), pages 247-266, September.
    4. Bekaert, Geert & Harvey, Campbell R., 1997. "Emerging equity market volatility," Journal of Financial Economics, Elsevier, vol. 43(1), pages 29-77, January.
    5. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    6. Xing, Kai & Yang, Xiaoguang, 2020. "Predicting default rates by capturing critical transitions in the macroeconomic system," Finance Research Letters, Elsevier, vol. 32(C).
    7. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    8. Giuseppe Orlando & Giovanna Zimatore, 2021. "Recurrence Quantification Analysis of Business Cycles," Dynamic Modeling and Econometrics in Economics and Finance, in: Giuseppe Orlando & Alexander N. Pisarchik & Ruedi Stoop (ed.), Nonlinearities in Economics, chapter 0, pages 269-282, Springer.
    9. Matheus José Silva de Souza & Danilo Guimarães Franco Ramos & Marina Garcia Pena & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Examination of the profitability of technical analysis based on moving average strategies in BRICS," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-18, December.
    10. Sudharshan Reddy Paramati & Rakesh Gupta & Kishore Tandon, 2016. "Dynamic analysis of time-varying correlations and cointegration relationship between Australia and frontier equity markets," International Journal of Business and Emerging Markets, Inderscience Enterprises Ltd, vol. 8(2), pages 121-145.
    11. Heiberger, Raphael H., 2018. "Predicting economic growth with stock networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 102-111.
    12. Cheol S. Eun & Sandy Lai & Frans A. de Roon & Zhe Zhang, 2010. "International Diversification with Factor Funds," Management Science, INFORMS, vol. 56(9), pages 1500-1518, September.
    13. Ranjeeni, Kumari, 2014. "Sectoral and industrial performance during a stock market crisis," Economic Systems, Elsevier, vol. 38(2), pages 178-193.
    14. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    15. Bekaert, Geert & Harvey, Campbell R., 2003. "Emerging markets finance," Journal of Empirical Finance, Elsevier, vol. 10(1-2), pages 3-56, February.
    16. Angélique O J Cramer & Claudia D van Borkulo & Erik J Giltay & Han L J van der Maas & Kenneth S Kendler & Marten Scheffer & Denny Borsboom, 2016. "Major Depression as a Complex Dynamic System," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-20, December.
    17. Chelley-Steeley, Patricia L., 2005. "Modeling equity market integration using smooth transition analysis: A study of Eastern European stock markets," Journal of International Money and Finance, Elsevier, vol. 24(5), pages 818-831, September.
    18. Damasco, Achille & Giuliani, Alessandro, 2017. "A resonance based model of biological evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 750-756.
    19. Chiang, Thomas C. & Yu, Hai-Chin & Wu, Ming-Chya, 2009. "Statistical properties, dynamic conditional correlation and scaling analysis: Evidence from Dow Jones and Nasdaq high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1555-1570.
    20. Kim, Jae & Doucouliagos, Hristos & Stanley, T. D., 2014. "Market efficiency in Asian and Australasian stock markets: a fresh look at the evidence," Working Papers eco_2014_9, Deakin University, Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1307.8308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.