IDEAS home Printed from
   My bibliography  Save this paper

Smooth Value Function with Applications in Wealth-CVaR Efficient Portfolio and Turnpike Property


  • Baojun Bian
  • Harry Zheng


In this paper we continue the study of Bian-Miao-Zheng (2011) and extend the results there to a more general class of utility functions which may be bounded and non-strictly-concave and show that there is a classical solution to the HJB equation with the dual control method. We then apply the results to study the efficient frontier of wealth and conditional VaR (CVaR) problem and the turnpike property problem. For the former we construct explicitly the optimal control and discuss the choice of the optimal threadshold level and illustrate that the wealth and the CVaR are positively correlated. For the latter we give a simple proof to the turnpike property of the optimal policy of long-run investors and generalize the results of Huang-Zariphopoulou (1999).

Suggested Citation

  • Baojun Bian & Harry Zheng, 2012. "Smooth Value Function with Applications in Wealth-CVaR Efficient Portfolio and Turnpike Property," Papers 1212.3137,
  • Handle: RePEc:arx:papers:1212.3137

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Cox, John C. & Huang, Chi-fu, 1992. "A continuous-time portfolio turnpike theorem," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 491-507.
    2. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Salvatore Federico & Paul Gassiat & Fausto Gozzi, 2015. "Utility maximization with current utility on the wealth: regularity of solutions to the HJB equation," Finance and Stochastics, Springer, vol. 19(2), pages 415-448, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.3137. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.