IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v16y1992i3-4p491-507.html
   My bibliography  Save this article

A continuous-time portfolio turnpike theorem

Author

Listed:
  • Cox, John C.
  • Huang, Chi-fu

Abstract

No abstract is available for this item.

Suggested Citation

  • Cox, John C. & Huang, Chi-fu, 1992. "A continuous-time portfolio turnpike theorem," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 491-507.
  • Handle: RePEc:eee:dyncon:v:16:y:1992:i:3-4:p:491-507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0165-1889(92)90046-H
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baojun Bian & Harry Zheng, 2014. "Turnpike Property and Convergence Rate for an Investment Model with General Utility Functions," Papers 1409.7802, arXiv.org.
    2. Tianran Geng & Thaleia Zariphopoulou, 2017. "Temporal and Spatial Turnpike-Type Results Under Forward Time-Monotone Performance Criteria," Papers 1702.05649, arXiv.org.
    3. Baojun Bian & Harry Zheng, 2012. "Smooth Value Function with Applications in Wealth-CVaR Efficient Portfolio and Turnpike Property," Papers 1212.3137, arXiv.org.
    4. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
    5. Guasoni, Paolo & Muhle-Karbe, Johannes & Xing, Hao, 2017. "Robust portfolios and weak incentives in long-run investments," LSE Research Online Documents on Economics 60577, London School of Economics and Political Science, LSE Library.
    6. Sergey Nadtochiy & Michael Tehranchi, 2013. "Optimal investment for all time horizons and Martin boundary of space-time diffusions," Papers 1308.2254, arXiv.org, revised Jan 2014.
    7. Vladimir Cherny & Jan Obloj, 2013. "Optimal portfolios of a long-term investor with floor or drawdown constraints," Papers 1305.6831, arXiv.org.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Jin, Xing, 1998. "Consumption and portfolio turnpike theorems in a continuous-time finance model1," Journal of Economic Dynamics and Control, Elsevier, vol. 22(7), pages 1001-1026, May.
    10. Scott Robertson & Hao Xing, 2014. "Long Term Optimal Investment in Matrix Valued Factor Models," Papers 1408.7010, arXiv.org.
    11. Bian, Baojun & Zheng, Harry, 2015. "Turnpike property and convergence rate for an investment model with general utility functions," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 28-49.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:16:y:1992:i:3-4:p:491-507. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.