IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1211.0130.html
   My bibliography  Save this paper

The full-tails gamma distribution applied to model extreme values

Author

Listed:
  • Joan del castillo
  • Jalila Daoudi
  • Isabel Serra

Abstract

In this article we show the relationship between the Pareto distribution and the gamma distribution. This shows that the second one, appropriately extended, explains some anomalies that arise in the practical use of extreme value theory. The results are useful to certain phenomena that are fitted by the Pareto distribution but, at the same time, they present a deviation from this law for very large values. Two examples of data analysis with the new model are provided. The first one is on the influence of climate variability on the occurrence of tropical cyclones. The second one on the analysis of aggregate loss distributions associated to operational risk management.

Suggested Citation

  • Joan del castillo & Jalila Daoudi & Isabel Serra, 2012. "The full-tails gamma distribution applied to model extreme values," Papers 1211.0130, arXiv.org.
  • Handle: RePEc:arx:papers:1211.0130
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1211.0130
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Degen, Matthias & Embrechts, Paul & Lambrigger, Dominik D., 2007. "The Quantitative Modeling of Operational Risk: Between G-and-H and EVT," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 265-291, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristiano Villa, 2017. "Bayesian estimation of the threshold of a generalised pareto distribution for heavy-tailed observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 95-118, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    2. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    3. Balkema, A.A. & Embrechts, P. & Nolde, N., 2010. "Meta densities and the shape of their sample clouds," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1738-1754, August.
    4. M. Bee & J. Hambuckers & L. Trapin, 2019. "Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1255-1266, August.
    5. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    6. Daniel Hadley & Harry Joe & Natalia Nolde, 2021. "On the Selection of Loss Severity Distributions to Model Operational Risk," Papers 2107.03979, arXiv.org.
    7. Marco Bee & Julien Hambuckers & Luca Trapin, 2019. "An improved approach for estimating large losses in insurance analytics and operational risk using the g-and-h distribution," DEM Working Papers 2019/11, Department of Economics and Management.
    8. Dominik D. Lambrigger & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "The Quantification of Operational Risk using Internal Data, Relevant External Data and Expert Opinions," Papers 0904.1361, arXiv.org.
    9. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    10. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010. "An efficient threshold choice for operational risk capital computation," Documents de travail du Centre d'Economie de la Sorbonne 10096, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Nov 2011.
    11. Ghosh, Souvik & Resnick, Sidney, 2010. "A discussion on mean excess plots," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1492-1517, August.
    12. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.
    13. J. D. Opdyke, 2014. "Estimating Operational Risk Capital with Greater Accuracy, Precision, and Robustness," Papers 1406.0389, arXiv.org, revised Nov 2014.
    14. Mao, Tiantian & Lv, Wenhua & Hu, Taizhong, 2012. "Second-order expansions of the risk concentration based on CTE," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 449-456.
    15. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Papers 1502.00882, arXiv.org.
    16. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    17. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    18. Marco Bee & Julien Hambuckers & Flavio Santi & Luca Trapin, 2021. "Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach," Computational Statistics, Springer, vol. 36(3), pages 2177-2200, September.
    19. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    20. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1211.0130. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.