IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i1p341-350.html
   My bibliography  Save this article

Diversification for infinite-mean Pareto models without risk aversion

Author

Listed:
  • Chen, Yuyu
  • Hu, Taizhong
  • Wang, Ruodu
  • Zou, Zhenfeng

Abstract

We study stochastic dominance between portfolios of independent and identically distributed (iid) extremely heavy-tailed (i.e., infinite-mean) Pareto random variables. With the notion of majorization order, we show that a more diversified portfolio of iid extremely heavy-tailed Pareto random variables is larger in the sense of first-order stochastic dominance. This result is further generalized for Pareto random variables caused by triggering events, random variables with tails being Pareto, bounded Pareto random variables, and positively dependent Pareto random variables. These results provide an important implication in investment: Diversification of extremely heavy-tailed Pareto profits uniformly increases investors’ profitability, leading to a diversification benefit. Remarkably, different from the finite-mean setting, such a diversification benefit does not depend on the decision maker’s risk aversion.

Suggested Citation

  • Chen, Yuyu & Hu, Taizhong & Wang, Ruodu & Zou, Zhenfeng, 2025. "Diversification for infinite-mean Pareto models without risk aversion," European Journal of Operational Research, Elsevier, vol. 323(1), pages 341-350.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:1:p:341-350
    DOI: 10.1016/j.ejor.2025.01.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725000827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.01.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rustam Ibragimov, 2009. "Portfolio diversification and value at risk under thick-tailedness," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 565-580.
    2. Silverberg, Gerald & Verspagen, Bart, 2007. "The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance," Journal of Econometrics, Elsevier, vol. 139(2), pages 318-339, August.
    3. Pierpaolo Andriani & Bill McKelvey, 2007. "Beyond Gaussian averages: redirecting international business and management research toward extreme events and power laws," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 38(7), pages 1212-1230, December.
    4. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    5. Mincheol Choi & Chang-Yang Lee, 2020. "Power-law distributions of corporate innovative output: evidence from U.S. patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 519-554, January.
    6. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2022. "An unexpected stochastic dominance: Pareto distributions, dependence, and diversification," Papers 2208.08471, arXiv.org, revised Mar 2024.
    7. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    8. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    9. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2024. "Risk exchange under infinite-mean Pareto models," Papers 2403.20171, arXiv.org, revised Jun 2025.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    12. Sarabia, José María & Gómez-Déniz, Emilio & Prieto, Faustino & Jordá, Vanesa, 2016. "Risk aggregation in multivariate dependent Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 154-163.
    13. Samuelson, Paul A., 1967. "General Proof that Diversification Pays*," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(1), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuyu Chen & Taizhong Hu & Seva Shneer & Zhenfeng Zou, 2025. "Stochastic dominance for linear combinations of infinite-mean risks," Papers 2505.01739, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyu Chen & Taizhong Hu & Ruodu Wang & Zhenfeng Zou, 2024. "Diversification for infinite-mean Pareto models without risk aversion," Papers 2404.18467, arXiv.org, revised Feb 2025.
    2. Yuyu Chen & Ruodu Wang, 2024. "Infinite-mean models in risk management: Discussions and recent advances," Papers 2408.08678, arXiv.org, revised Oct 2024.
    3. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2022. "An unexpected stochastic dominance: Pareto distributions, dependence, and diversification," Papers 2208.08471, arXiv.org, revised Mar 2024.
    4. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2024. "Risk exchange under infinite-mean Pareto models," Papers 2403.20171, arXiv.org, revised Jun 2025.
    5. Markus Huggenberger & Peter Albrecht, 2022. "Risk pooling and solvency regulation: A policyholder's perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 907-950, December.
    6. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
    7. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2551-2569, August.
    8. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
    9. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    10. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    11. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    12. Ito, Kakeru & Yoshiba, Toshinao, 2025. "Dynamic asymmetric tail dependence structure among multi-asset classes for portfolio management: Dynamic skew-t copula approach," International Review of Economics & Finance, Elsevier, vol. 97(C).
    13. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    14. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    15. Schuhmacher, Frank & Auer, Benjamin R., 2014. "Sufficient conditions under which SSD- and MR-efficient sets are identical," European Journal of Operational Research, Elsevier, vol. 239(3), pages 756-763.
    16. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," CIRJE F-Series CIRJE-F-705, CIRJE, Faculty of Economics, University of Tokyo.
    17. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    18. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    19. Han, Xia & Lin, Liyuan & Wang, Ruodu, 2023. "Diversification quotients based on VaR and ES," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 185-197.
    20. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:1:p:341-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.