IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v79y2025i3d10.1007_s00199-024-01610-8.html
   My bibliography  Save this article

Probabilistic risk aversion for generalized rank-dependent functions

Author

Listed:
  • Ruodu Wang

    (University of Waterloo)

  • Qinyu Wu

    (University of Waterloo)

Abstract

Probabilistic risk aversion, defined through quasi-convexity in probabilistic mixtures, is a common useful property in decision analysis. We study a general class of non-monotone mappings, called the generalized rank-dependent functions, which includes the preference models of expected utilities, dual utilities, and rank-dependent utilities as special cases, as well as signed Choquet functions used in risk management. Our results fully characterize probabilistic risk aversion for generalized rank-dependent functions: This property is determined by the distortion function, which is precisely one of the two cases: those that are convex and those that correspond to scaled quantile-spread mixtures. Our result also leads to seven equivalent conditions for quasi-convexity in probabilistic mixtures of dual utilities and signed Choquet functions. As a consequence, although probabilistic risk aversion is quite different from the classic notion of strong risk aversion for generalized rank-dependent functions, these two notions coincide for dual utilities under an additional continuity assumption.

Suggested Citation

  • Ruodu Wang & Qinyu Wu, 2025. "Probabilistic risk aversion for generalized rank-dependent functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 79(3), pages 1055-1082, May.
  • Handle: RePEc:spr:joecth:v:79:y:2025:i:3:d:10.1007_s00199-024-01610-8
    DOI: 10.1007/s00199-024-01610-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00199-024-01610-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00199-024-01610-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    3. Hong, Chew Soo & Karni, Edi & Safra, Zvi, 1987. "Risk aversion in the theory of expected utility with rank dependent probabilities," Journal of Economic Theory, Elsevier, vol. 42(2), pages 370-381, August.
    4. Louis R. Eeckhoudt & Roger J. A. Laeven, 2022. "Dual Moments and Risk Attitudes," Operations Research, INFORMS, vol. 70(3), pages 1330-1341, May.
    5. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    6. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    7. Katarzyna M. Werner & Horst Zank, 2019. "A revealed reference point for prospect theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(4), pages 731-773, June.
    8. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    9. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    10. Wakker, Peter P. & Yang, Jingni, 2019. "A powerful tool for analyzing concave/convex utility and weighting functions," Journal of Economic Theory, Elsevier, vol. 181(C), pages 143-159.
    11. Liu, Fangda & Cai, Jun & Lemieux, Christiane & Wang, Ruodu, 2020. "Convex risk functionals: Representation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 66-79.
    12. Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
    13. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    14. Bach Dong-Xuan & Philippe Bich & Bertrand Wigniolle, 2025. "Prudent aggregation of quasi-hyperbolic experts," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 79(2), pages 417-444, March.
    15. Johanna F. Ziegel, 2016. "Coherence And Elicitability," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 901-918, October.
    16. Cohen, Michele & Jaffray, Jean-Yves & Said, Tanios, 1987. "Experimental comparison of individual behavior under risk and under uncertainty for gains and for losses," Organizational Behavior and Human Decision Processes, Elsevier, vol. 39(1), pages 1-22, February.
    17. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    18. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    19. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    20. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    21. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    22. Peng Liu & Alexander Schied & Ruodu Wang, 2021. "Distributional Transforms, Probability Distortions, and Their Applications," Mathematics of Operations Research, INFORMS, vol. 46(4), pages 1490-1512, November.
    23. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    24. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    25. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    26. Marzena Rostek, 2010. "Quantile Maximization in Decision Theory ," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 339-371.
    27. Dekel, Eddie, 1986. "An axiomatic characterization of preferences under uncertainty: Weakening the independence axiom," Journal of Economic Theory, Elsevier, vol. 40(2), pages 304-318, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruodu Wang & Qinyu Wu, 2022. "Probabilistic risk aversion for generalized rank-dependent functions," Papers 2209.03425, arXiv.org, revised Sep 2024.
    2. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    3. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    4. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    5. Zvi Safra & Uzi Segal, 2005. "Are Universal Preferences Possible? Calibration Results for Non-Expected Utility Theories," Boston College Working Papers in Economics 633, Boston College Department of Economics.
    6. Peng Liu & Tiantian Mao & Ruodu Wang, 2024. "Quantiles under ambiguity and risk sharing," Papers 2412.19546, arXiv.org.
    7. Tobias Fissler & Fangda Liu & Ruodu Wang & Linxiao Wei, 2024. "Elicitability and identifiability of tail risk measures," Papers 2404.14136, arXiv.org, revised Jun 2024.
    8. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    9. Markus Huggenberger & Peter Albrecht, 2022. "Risk pooling and solvency regulation: A policyholder's perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 907-950, December.
    10. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    11. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org, revised May 2025.
    12. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    13. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    14. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    15. Trabelsi, Mohamed Ali, 2006. "Les nouveaux modèles de décision dans le risque et l’incertain : quel apport ? [The new models of decision under risk or uncertainty : What approach?]," MPRA Paper 25442, University Library of Munich, Germany.
    16. Dorian Jullien & Alexandre Truc, 2024. "Towards a history of behavioural and experimental economics in France," The European Journal of the History of Economic Thought, Taylor & Francis Journals, vol. 31(6), pages 998-1033, November.
    17. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    18. Fabio Bellini & Tolulope Fadina & Ruodu Wang & Yunran Wei, 2020. "Parametric measures of variability induced by risk measures," Papers 2012.05219, arXiv.org, revised Apr 2022.
    19. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    20. Ulrich Schmidt & Horst Zank, 2022. "Chance theory: A separation of riskless and risky utility," Journal of Risk and Uncertainty, Springer, vol. 65(1), pages 1-32, August.

    More about this item

    Keywords

    Quasi-convexity; Risk aversion; Signed Choquet functions; Rank-dependent utilities; Probabilistic mixtures;
    All these keywords.

    JEL classification:

    • D30 - Microeconomics - - Distribution - - - General
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:79:y:2025:i:3:d:10.1007_s00199-024-01610-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.