IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1205.1617.html
   My bibliography  Save this paper

A multivariate piecing-together approach with an application to operational loss data

Author

Listed:
  • Stefan Aulbach
  • Verena Bayer
  • Michael Falk

Abstract

The univariate piecing-together approach (PT) fits a univariate generalized Pareto distribution (GPD) to the upper tail of a given distribution function in a continuous manner. We propose a multivariate extension. First it is shown that an arbitrary copula is in the domain of attraction of a multivariate extreme value distribution if and only if its upper tail can be approximated by the upper tail of a multivariate GPD with uniform margins. The multivariate PT then consists of two steps: The upper tail of a given copula $C$ is cut off and substituted by a multivariate GPD copula in a continuous manner. The result is again a copula. The other step consists of the transformation of each margin of this new copula by a given univariate distribution function. This provides, altogether, a multivariate distribution function with prescribed margins whose copula coincides in its central part with $C$ and in its upper tail with a GPD copula. When applied to data, this approach also enables the evaluation of a wide range of rational scenarios for the upper tail of the underlying distribution function in the multivariate case. We apply this approach to operational loss data in order to evaluate the range of operational risk.

Suggested Citation

  • Stefan Aulbach & Verena Bayer & Michael Falk, 2012. "A multivariate piecing-together approach with an application to operational loss data," Papers 1205.1617, arXiv.org.
  • Handle: RePEc:arx:papers:1205.1617
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1205.1617
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Alsina, Claudi & Nelsen, Roger B. & Schweizer, Berthold, 1993. "On the characterization of a class of binary operations on distribution functions," Statistics & Probability Letters, Elsevier, vol. 17(2), pages 85-89, May.
    3. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
    4. Genest, C. & Quesada Molina, J. J. & Rodriguez Lallena, J. A. & Sempi, C., 1999. "A Characterization of Quasi-copulas," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 193-205, May.
    5. Michel, René, 2008. "Some notes on multivariate generalized Pareto distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1288-1301, July.
    6. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Durante, Fabrizio & Fernández Sánchez, Juan & Sempi, Carlo, 2013. "Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 897-905.
    2. Falk, Michael & Stupfler, Gilles, 2017. "An offspring of multivariate extreme value theory: The max-characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 85-95.
    3. Aulbach, Stefan & Falk, Michael & Hofmann, Martin, 2012. "The multivariate Piecing-Together approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 161-170.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1205.1617. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.