IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v64y2023i6d10.1007_s00362-022-01362-4.html
   My bibliography  Save this article

Multivariate copulas with given values at two arbitrary points

Author

Listed:
  • Erich Peter Klement

    (Johannes Kepler University Linz)

  • Damjana Kokol Bukovšek

    (University of Ljubljana)

  • Matjaž Omladič

    (Institute of Mathematics, Physics and Mechanics)

  • Susanne Saminger-Platz

    (Johannes Kepler University Linz)

  • Nik Stopar

    (University of Ljubljana)

Abstract

Copulas are functions that link an n-dimensional distribution function with its one-dimensional margins. In this contribution we show how n-variate copulas with given values at two arbitrary points can be constructed. Thereby, we also answer a so far open question whether lower and upper bounds for n-variate copulas with given value at a single arbitrary point are achieved. We also introduce and discuss the concept of an $$\mathbf{F}$$ F -copula which is needed for proving our results.

Suggested Citation

  • Erich Peter Klement & Damjana Kokol Bukovšek & Matjaž Omladič & Susanne Saminger-Platz & Nik Stopar, 2023. "Multivariate copulas with given values at two arbitrary points," Statistical Papers, Springer, vol. 64(6), pages 2015-2055, December.
  • Handle: RePEc:spr:stpapr:v:64:y:2023:i:6:d:10.1007_s00362-022-01362-4
    DOI: 10.1007/s00362-022-01362-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01362-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01362-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alsina, Claudi & Nelsen, Roger B. & Schweizer, Berthold, 1993. "On the characterization of a class of binary operations on distribution functions," Statistics & Probability Letters, Elsevier, vol. 17(2), pages 85-89, May.
    2. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2001. "Distribution functions of copulas: a class of bivariate probability integral transforms," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 277-282, October.
    3. Fabrizio Durante & Juan Fernández Sánchez & Wolfgang Trutschnig, 2020. "Spatially homogeneous copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 607-626, April.
    4. Peter Tankov, 2010. "Improved Frechet bounds and model-free pricing of multi-asset options," Papers 1004.4153, arXiv.org, revised Mar 2011.
    5. Genest, C. & Quesada Molina, J. J. & Rodriguez Lallena, J. A. & Sempi, C., 1999. "A Characterization of Quasi-copulas," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 193-205, May.
    6. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    7. Durante, Fabrizio & Fernández Sánchez, Juan & Trutschnig, Wolfgang, 2014. "Multivariate copulas with hairpin support," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 323-334.
    8. Puccetti Giovanni & Rüschendorf Ludger & Manko Dennis, 2016. "VaR bounds for joint portfolios with dependence constraints," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bpj:demode:v:6:y:2018:i:1:p:139-155:n:9 is not listed on IDEAS
    2. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    3. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodri­guez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2008. "On the construction of copulas and quasi-copulas with given diagonal sections," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 473-483, April.
    4. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    5. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    6. Quesada Molina, Jose Juan & Sempi, Carlo, 2005. "Discrete quasi-copulas," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 27-41, August.
    7. Stefan Aulbach & Verena Bayer & Michael Falk, 2012. "A multivariate piecing-together approach with an application to operational loss data," Papers 1205.1617, arXiv.org.
    8. Fabrizio Durante & Juan Fernández-Sánchez & Wolfgang Trutschnig & Manuel Úbeda-Flores, 2020. "On the Size of Subclasses of Quasi-Copulas and Their Dedekind–MacNeille Completion," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
    9. Saminger-Platz Susanne & De Jesús Arias-García José & Mesiar Radko & Klement Erich Peter, 2017. "Characterizations of bivariate conic, extreme value, and Archimax copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 45-58, January.
    10. Durante Fabrizio & Fernández-Sánchez Juan & Trutschnig Wolfgang, 2014. "Solution to an open problem about a transformation on the space of copulas," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-8, November.
    11. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2011. "Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00539032, HAL.
    12. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    13. Ali E. Abbas, 2009. "Multiattribute Utility Copulas," Operations Research, INFORMS, vol. 57(6), pages 1367-1383, December.
    14. Papapantoleon Antonis & Yanez Sarmiento Paulo, 2021. "Detection of arbitrage opportunities in multi-asset derivatives markets," Dependence Modeling, De Gruyter, vol. 9(1), pages 439-459, January.
    15. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    16. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias & Vanduffel Steven, 2017. "My introduction to copulas: An interview with Roger Nelsen," Dependence Modeling, De Gruyter, vol. 5(1), pages 88-98, January.
    17. Aulbach, Stefan & Falk, Michael & Hofmann, Martin, 2012. "The multivariate Piecing-Together approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 161-170.
    18. Thibaut Lux & Antonis Papapantoleon, 2016. "Improved Fr\'echet$-$Hoeffding bounds on $d$-copulas and applications in model-free finance," Papers 1602.08894, arXiv.org, revised Jun 2017.
    19. Nelsen, Roger B. & Molina, José Juan Quesada & Lallena, José Antonio Rodríguez & Flores, Manuel Úbeda, 2004. "Best-possible bounds on sets of bivariate distribution functions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 348-358, August.
    20. Antonis Papapantoleon & Paulo Yanez Sarmiento, 2020. "Detection of arbitrage opportunities in multi-asset derivatives markets," Papers 2002.06227, arXiv.org, revised Nov 2021.
    21. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:6:d:10.1007_s00362-022-01362-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.