IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v9y2021i1p439-459n18.html
   My bibliography  Save this article

Detection of arbitrage opportunities in multi-asset derivatives markets

Author

Listed:
  • Papapantoleon Antonis

    (Delft Institute of Applied Mathematics, TU Delft, 2628 Delft, TheNetherlands; Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion, Greece)

  • Sarmiento Paulo Yanez

    (Institute of Mathematics, TU Berlin, Straße des 17. Juni 136, 10623Berlin, Germany)

Abstract

We are interested in the existence of equivalent martingale measures and the detection of arbitrage opportunities in markets where several multi-asset derivatives are traded simultaneously. More specifically, we consider a financial market with multiple traded assets whose marginal risk-neutral distributions are known, and assume that several derivatives written on these assets are traded simultaneously. In this setting, there is a bijection between the existence of an equivalent martingale measure and the existence of a copula that couples these marginals. Using this bijection and recent results on improved Fréchet–Hoeffding bounds in the presence of additional information on functionals of a copula by [18], we can extend the results of [33] on the detection of arbitrage opportunities to the general multi-dimensional case. More specifically, we derive sufficient conditions for the absence of arbitrage and formulate an optimization problem for the detection of a possible arbitrage opportunity. This problem can be solved efficiently using numerical optimization routines. The most interesting practical outcome is the following: we can construct a financial market where each multi-asset derivative is traded within its own no-arbitrage interval, and yet when considered together an arbitrage opportunity may arise.

Suggested Citation

  • Papapantoleon Antonis & Sarmiento Paulo Yanez, 2021. "Detection of arbitrage opportunities in multi-asset derivatives markets," Dependence Modeling, De Gruyter, vol. 9(1), pages 439-459, January.
  • Handle: RePEc:vrs:demode:v:9:y:2021:i:1:p:439-459:n:18
    DOI: 10.1515/demo-2021-0121
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2021-0121
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2021-0121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hans Buehler, 2006. "Expensive martingales," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 207-218.
    2. Cousot, Laurent, 2007. "Conditions on option prices for absence of arbitrage and exact calibration," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3377-3397, November.
    3. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    4. Javier Pena & Juan Vera & Luis Zuluaga, 2010. "Static-arbitrage lower bounds on the prices of basket options via linear programming," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 819-827.
    5. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    8. Puccetti Giovanni & Rüschendorf Ludger & Manko Dennis, 2016. "VaR bounds for joint portfolios with dependence constraints," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-14, December.
    9. Bertrand Tavin, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Post-Print hal-02313250, HAL.
    10. Rüschendorf L., 2018. "Risk bounds with additional information on functionals of the risk vector," Dependence Modeling, De Gruyter, vol. 6(1), pages 102-113, June.
    11. Peter Tankov, 2010. "Improved Frechet bounds and model-free pricing of multi-asset options," Papers 1004.4153, arXiv.org, revised Mar 2011.
    12. P. Carr & D. Madan, 2001. "Optimal positioning in derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 19-37.
    13. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    2. Jonathan Ansari & Eva Lutkebohmert & Ariel Neufeld & Julian Sester, 2022. "Improved Robust Price Bounds for Multi-Asset Derivatives under Market-Implied Dependence Information," Papers 2204.01071, arXiv.org, revised Sep 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonis Papapantoleon & Paulo Yanez Sarmiento, 2020. "Detection of arbitrage opportunities in multi-asset derivatives markets," Papers 2002.06227, arXiv.org, revised Nov 2021.
    2. Stefan Gerhold & I. Cetin Gulum, 2016. "Consistency of option prices under bid-ask spreads," Papers 1608.05585, arXiv.org, revised Jul 2019.
    3. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    4. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    5. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    6. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    7. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Hedging option books using neural-SDE market models," Papers 2205.15991, arXiv.org.
    8. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    9. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    10. Peter Carr & Lorenzo Torricelli, 2021. "Additive logistic processes in option pricing," Finance and Stochastics, Springer, vol. 25(4), pages 689-724, October.
    11. Hélyette Geman & Dilip B. Madan & Marc Yor, 2007. "Probing Option Prices for Information," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 115-131, March.
    12. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    13. Beatrice Acciaio & Mathias Beiglbock & Friedrich Penkner & Walter Schachermayer, 2013. "A model-free version of the fundamental theorem of asset pricing and the super-replication theorem," Papers 1301.5568, arXiv.org, revised Mar 2013.
    14. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    15. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    16. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    17. Julien Guyon, 2020. "Inversion of convex ordering in the VIX market," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1597-1623, October.
    18. Daniel Bartl & Michael Kupper & Thibaut Lux & Antonis Papapantoleon & Stephan Eckstein, 2017. "Marginal and dependence uncertainty: bounds, optimal transport, and sharpness," Papers 1709.00641, arXiv.org, revised Aug 2018.
    19. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and repairing arbitrage in traded option prices," Papers 2008.09454, arXiv.org.
    20. J. A. Primbs, 2010. "SDP Relaxation of Arbitrage Pricing Bounds Based on Option Prices and Moments," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 137-155, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:9:y:2021:i:1:p:439-459:n:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.