IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1209.6439.html
   My bibliography  Save this paper

The best gain-loss ratio is a poor performance measure

Author

Listed:
  • Sara Biagini
  • Mustafa Pinar

Abstract

The gain-loss ratio is known to enjoy very good properties from a normative point of view. As a confirmation, we show that the best market gain-loss ratio in the presence of a random endowment is an acceptability index and we provide its dual representation for general probability spaces. However, the gain-loss ratio was designed for finite $\Omega$, and works best in that case. For general $\Omega$ and in most continuous time models, the best gain-loss is either infinite or fails to be attained. In addition, it displays an odd behaviour due to the scale invariance property, which does not seem desirable in this context. Such weaknesses definitely prove that the (best) gain-loss is a poor performance measure.

Suggested Citation

  • Sara Biagini & Mustafa Pinar, 2012. "The best gain-loss ratio is a poor performance measure," Papers 1209.6439, arXiv.org, revised Dec 2012.
  • Handle: RePEc:arx:papers:1209.6439
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1209.6439
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. PInar, Mustafa Ç. & Salih, AslIhan & CamcI, Ahmet, 2010. "Expected gain-loss pricing and hedging of contingent claims in incomplete markets by linear programming," European Journal of Operational Research, Elsevier, vol. 201(3), pages 770-785, March.
    2. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    3. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    4. Aytaç Ílhan & Mattias Jonsson & Ronnie Sircar, 2005. "Optimal investment with derivative securities," Finance and Stochastics, Springer, vol. 9(4), pages 585-595, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1209.6439. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.