IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1209.4695.html
   My bibliography  Save this paper

On statistical indistinguishability of the complete and incomplete markets

Author

Listed:
  • Nikolai Dokuchaev

Abstract

The possibility of statistical evaluation of the market completeness and incompleteness is investigated for continuous time diffusion stock market models. It is known that the market completeness is not a robust property: small random deviations of the coefficients convert a complete market model into a incomplete one. The paper shows that market incompleteness is also non-robust: small deviations can convert an incomplete model into a complete one. More precisely, it is shown that, for any incomplete market from a wide class of models, there exists a complete market model with arbitrarily close paths of the stock prices and the market parameters. This leads to a counterintuitive conclusion that the incomplete markets are indistinguishable from the complete markets in the terms of the market statistics.

Suggested Citation

  • Nikolai Dokuchaev, 2012. "On statistical indistinguishability of the complete and incomplete markets," Papers 1209.4695, arXiv.org, revised May 2013.
  • Handle: RePEc:arx:papers:1209.4695
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1209.4695
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    2. Elliott, Robert J. & Hunter, William C. & Jamieson, Barbara M., 1998. "Drift and volatility estimation in discrete time," Journal of Economic Dynamics and Control, Elsevier, vol. 22(2), pages 209-218, February.
    3. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    4. Yacine Ait-Sahalia & Jialin Yu, 2009. "High frequency market microstructure noise estimates and liquidity measures," Papers 0906.1444, arXiv.org.
    5. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    6. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    7. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    8. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    9. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolai Dokuchaev, 2015. "On statistical indistinguishability of complete and incomplete discrete time market models," Papers 1505.00638, arXiv.org.
    2. Nikolai Dokuchaev, 2015. "Modelling Possibility of Short-Term Forecasting of Market Parameters for Portfolio Selection," Annals of Economics and Finance, Society for AEF, vol. 16(1), pages 143-161, May.
    3. Nikolai Dokuchaev, 2013. "On strong binomial approximation for stochastic processes and applications for financial modelling," Papers 1311.0675, arXiv.org, revised Feb 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1209.4695. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.