IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1203.0643.html
   My bibliography  Save this paper

Incorporating fat tails in financial models using entropic divergence measures

Author

Listed:
  • Santanu Dey
  • Sandeep Juneja

Abstract

In the existing financial literature, entropy based ideas have been proposed in portfolio optimization, in model calibration for options pricing as well as in ascertaining a pricing measure in incomplete markets. The abstracted problem corresponds to finding a probability measure that minimizes the relative entropy (also called $I$-divergence) with respect to a known measure while it satisfies certain moment constraints on functions of underlying assets. In this paper, we show that under $I$-divergence, the optimal solution may not exist when the underlying assets have fat tailed distributions, ubiquitous in financial practice. We note that this drawback may be corrected if `polynomial-divergence' is used. This divergence can be seen to be equivalent to the well known (relative) Tsallis or (relative) Renyi entropy. We discuss existence and uniqueness issues related to this new optimization problem as well as the nature of the optimal solution under different objectives. We also identify the optimal solution structure under $I$-divergence as well as polynomial-divergence when the associated constraints include those on marginal distribution of functions of underlying assets. These results are applied to a simple problem of model calibration to options prices as well as to portfolio modeling in Markowitz framework, where we note that a reasonable view that a particular portfolio of assets has heavy tailed losses may lead to fatter and more reasonable tail distributions of all assets.

Suggested Citation

  • Santanu Dey & Sandeep Juneja, 2012. "Incorporating fat tails in financial models using entropic divergence measures," Papers 1203.0643, arXiv.org.
  • Handle: RePEc:arx:papers:1203.0643
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1203.0643
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 143-159, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.0643. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.