IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0912.1321.html
   My bibliography  Save this paper

Early exercise boundary for American type of floating strike Asian option and its numerical approximation

Author

Listed:
  • Tomas Bokes
  • Daniel Sevcovic

Abstract

In this paper we generalize and analyze the model for pricing American-style Asian options due to (Hansen and Jorgensen 2000) by including a continuous dividend rate $q$ and a general method of averaging of the floating strike. We focus on the qualitative and quantitative analysis of the early exercise boundary. The first order Taylor series expansion of the early exercise boundary close to expiry is constructed. We furthermore propose an efficient numerical algorithm for determining the early exercise boundary position based on the front fixing method. Construction of the algorithm is based on a solution to a nonlocal parabolic partial differential equation for the transformed variable representing the synthesized portfolio. Various numerical results and comparisons of our numerical method and the method developed by (Dai and Kwok 2006) are presented.

Suggested Citation

  • Tomas Bokes & Daniel Sevcovic, 2009. "Early exercise boundary for American type of floating strike Asian option and its numerical approximation," Papers 0912.1321, arXiv.org.
  • Handle: RePEc:arx:papers:0912.1321
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0912.1321
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andrea Pascucci, 2008. "Free boundary and optimal stopping problems for American Asian options," Finance and Stochastics, Springer, vol. 12(1), pages 21-41, January.
    2. Asbjørn T. Hansen & Peter Løchte Jørgensen, 2000. "Analytical Valuation of American-Style Asian Options," Management Science, INFORMS, vol. 46(8), pages 1116-1136, August.
    3. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    4. Rachel Kuske & Joseph Keller, 1998. "Optimal exercise boundary for an American put option," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(2), pages 107-116.
    5. Daniel Sevcovic, 2007. "An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black-Scholes equation," Papers 0710.5301, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Sevcovic & Martin Takac, 2011. "Sensitivity analysis of the early exercise boundary for American style of Asian options," Papers 1101.3071, arXiv.org.
    2. J. D. Kandilarov & D. Sevcovic, 2011. "Comparison of Two Numerical Methods for Computation of American Type of the Floating Strike Asian Option," Papers 1106.0020, arXiv.org.
    3. Tomas Bokes, 2010. "A unified approach to determining the early exercise boundary position at expiry for American style of general class of derivatives," Papers 1012.0348, arXiv.org, revised Mar 2011.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0912.1321. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.