IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1101.3071.html
   My bibliography  Save this paper

Sensitivity analysis of the early exercise boundary for American style of Asian options

Author

Listed:
  • Daniel Sevcovic
  • Martin Takac

Abstract

In this paper we analyze American style of floating strike Asian call options belonging to the class of financial derivatives whose payoff diagram depends not only on the underlying asset price but also on the path average of underlying asset prices over some predetermined time interval. The mathematical model for the option price leads to a free boundary problem for a parabolic partial differential equation. Applying fixed domain transformation and transformation of variables we develop an efficient numerical algorithm based on a solution to a non-local parabolic partial differential equation for the transformed variable representing the synthesized portfolio. For various types of averaging methods we investigate the dependence of the early exercise boundary on model parameters.

Suggested Citation

  • Daniel Sevcovic & Martin Takac, 2011. "Sensitivity analysis of the early exercise boundary for American style of Asian options," Papers 1101.3071, arXiv.org.
  • Handle: RePEc:arx:papers:1101.3071
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1101.3071
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andrea Pascucci, 2008. "Free boundary and optimal stopping problems for American Asian options," Finance and Stochastics, Springer, vol. 12(1), pages 21-41, January.
    2. Daniel Sevcovic, 2008. "Transformation methods for evaluating approximations to the optimal exercise boundary for linear and nonlinear Black-Scholes equations," Papers 0805.0611, arXiv.org.
    3. Tomas Bokes & Daniel Sevcovic, 2009. "Early exercise boundary for American type of floating strike Asian option and its numerical approximation," Papers 0912.1321, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1101.3071. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.