IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0806.3399.html
   My bibliography  Save this paper

Heterogeneous credit portfolios and the dynamics of the aggregate losses

Author

Listed:
  • Paolo Dai Pra
  • Marco Tolotti

Abstract

We study the impact of contagion in a network of firms facing credit risk. We describe an intensity based model where the homogeneity assumption is broken by introducing a random environment that makes it possible to take into account the idiosyncratic characteristics of the firms. We shall see that our model goes behind the identification of groups of firms that can be considered basically exchangeable. Despite this heterogeneity assumption our model has the advantage of being totally tractable. The aim is to quantify the losses that a bank may suffer in a large credit portfolio. Relying on a large deviation principle on the trajectory space of the process, we state a suitable law of large number and a central limit theorem useful to study large portfolio losses. Simulation results are provided as well as applications to portfolio loss distribution analysis.

Suggested Citation

  • Paolo Dai Pra & Marco Tolotti, 2008. "Heterogeneous credit portfolios and the dynamics of the aggregate losses," Papers 0806.3399, arXiv.org.
  • Handle: RePEc:arx:papers:0806.3399
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0806.3399
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    2. Paolo Dai Pra & Wolfgang J. Runggaldier & Elena Sartori & Marco Tolotti, 2007. "Large portfolio losses: A dynamic contagion model," Papers 0704.1348, arXiv.org, revised Mar 2009.
    3. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    4. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    5. Amir Dembo & Jean-Dominique Deuschel & Darrell Duffie, 2004. "Large portfolio losses," Finance and Stochastics, Springer, vol. 8(1), pages 3-16, January.
    6. Stefan Weber & Kay Giesecke, 2003. "Credit Contagion and Aggregate Losses," Computing in Economics and Finance 2003 246, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Spiliopoulos, 2014. "Systemic Risk and Default Clustering for Large Financial Systems," Papers 1402.5352, arXiv.org, revised Feb 2015.
    2. Cinzia Colapinto & Elena Sartori & Marco Tolotti, 2012. "A two-stage model for diffusion of innovations," Working Papers 16, Department of Management, Università Ca' Foscari Venezia.
    3. Ben Hambly & Nikolaos Kolliopoulos, 2020. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Finance and Stochastics, Springer, vol. 24(3), pages 757-794, July.
    4. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers & Justin A. Sirignano, 2011. "Large Portfolio Asymptotics for Loss From Default," Papers 1109.1272, arXiv.org, revised Feb 2015.
    5. Konstantinos Spiliopoulos & Jia Yang, 2018. "Network effects in default clustering for large systems," Papers 1812.07645, arXiv.org, revised Feb 2020.
    6. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    7. Sirignano, Justin & Spiliopoulos, Konstantinos, 2020. "Mean field analysis of neural networks: A central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1820-1852.
    8. Konstantinos Spiliopoulos & Justin A. Sirignano & Kay Giesecke, 2013. "Fluctuation Analysis for the Loss From Default," Papers 1304.1420, arXiv.org, revised Feb 2015.
    9. Xiaowei Zhang & Jose Blanchet & Kay Giesecke & Peter W. Glynn, 2015. "Affine Point Processes: Approximation and Efficient Simulation," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 797-819, October.
    10. Colapinto, Cinzia & Sartori, Elena & Tolotti, Marco, 2014. "Awareness, persuasion, and adoption: Enriching the Bass model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 1-10.
    11. Vera Ivanyuk, 2021. "Formulating the Concept of an Investment Strategy Adaptable to Changes in the Market Situation," Economies, MDPI, vol. 9(3), pages 1-19, June.
    12. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers, 2011. "Default clustering in large portfolios: Typical events," Papers 1104.1773, arXiv.org, revised Feb 2013.
    13. Konstantinos Spiliopoulos & Richard B. Sowers, 2013. "Default Clustering in Large Pools: Large Deviations," Papers 1311.0498, arXiv.org, revised Feb 2015.
    14. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    15. Amogh Deshpande, 2014. "Comparing the Value at Risk Performance of the CreditRisk + and its Enhancement: A Large Deviations Approach," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 1009-1023, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amogh Deshpande, 2014. "Comparing the Value at Risk Performance of the CreditRisk + and its Enhancement: A Large Deviations Approach," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 1009-1023, December.
    2. Spiliopoulos, Konstantinos & Sowers, Richard B., 2011. "Recovery rates in investment-grade pools of credit assets: A large deviations analysis," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2861-2898.
    3. Giesecke, Kay & Weber, Stefan, 2004. "Cyclical correlations, credit contagion, and portfolio losses," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3009-3036, December.
    4. Konstantinos Spiliopoulos, 2014. "Systemic Risk and Default Clustering for Large Financial Systems," Papers 1402.5352, arXiv.org, revised Feb 2015.
    5. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    6. Helmut Elsinger & Alfred Lehar & Martin Summer, 2006. "Risk Assessment for Banking Systems," Management Science, INFORMS, vol. 52(9), pages 1301-1314, September.
    7. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.
    8. Maldonado, Diego & Pazmiño, Mariela, 2008. "Nuevas Herramientas para la Administración del Riesgo Crediticio: El caso de una Cartera Crediticia Ecuatoriana [New Management Tool for Credit Risk analysis: An aplication for Financial Institutio," MPRA Paper 17163, University Library of Munich, Germany, revised 30 Dec 2008.
    9. Wozabal, David & Hochreiter, Ronald, 2012. "A coupled Markov chain approach to credit risk modeling," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 403-415.
    10. Giesecke, Kay & Weber, Stefan, 2006. "Credit contagion and aggregate losses," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 741-767, May.
    11. Giesecke, Kay & Weber, Stefan, 2003. "Cyclical correlations, credit contagion, and portfolio losses," SFB 373 Discussion Papers 2003,11, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    12. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, December.
    13. Edirisinghe, Chanaka & Gupta, Aparna & Roth, Wendy, 2015. "Risk assessment based on the analysis of the impact of contagion flow," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 209-223.
    14. Konstantinos Spiliopoulos & Jia Yang, 2018. "Network effects in default clustering for large systems," Papers 1812.07645, arXiv.org, revised Feb 2020.
    15. Andreas Mühlbacher & Thomas Guhr, 2018. "Extreme Portfolio Loss Correlations in Credit Risk," Risks, MDPI, vol. 6(3), pages 1-25, July.
    16. Paolo Dai Pra & Wolfgang J. Runggaldier & Elena Sartori & Marco Tolotti, 2007. "Large portfolio losses: A dynamic contagion model," Papers 0704.1348, arXiv.org, revised Mar 2009.
    17. Konstantinos Spiliopoulos & Justin A. Sirignano & Kay Giesecke, 2013. "Fluctuation Analysis for the Loss From Default," Papers 1304.1420, arXiv.org, revised Feb 2015.
    18. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers, 2011. "Default clustering in large portfolios: Typical events," Papers 1104.1773, arXiv.org, revised Feb 2013.
    19. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers & Justin A. Sirignano, 2011. "Large Portfolio Asymptotics for Loss From Default," Papers 1109.1272, arXiv.org, revised Feb 2015.
    20. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0806.3399. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.