IDEAS home Printed from https://ideas.repec.org/p/anu/eenwps/0207.html
   My bibliography  Save this paper

Growth and the Environment in Canada: An Empirical Analysis

Author

Listed:
  • Kathleen M. Day

    (University of Ottawa, Department of Economics)

  • R. Quentin Grafton

    (Australian National University, Asia Pacific School of Economics and Government)

Abstract

Standard reduced form models are estimated for Canada to examine the relationships between real per capita GDP and four measures of environmental degradation. Of the four chosen measures of environmental degradation, only concentrations of carbon monoxide appear to decline in the long run with increases in real per capita income. The data used in the reduced form models are also tested for the presence of unit roots and for the existence of cointegration between each of the measures of environmental degradation and per capita income. Unit root tests indicate nonstationarity in logs of the measures of environmental degradation and per capita income. The Engle-Granger test and the maximum eigenvalue test suggest that per capita income and the measures of environmental degradation are not cointegrated, or that a long-term relationship between the variables does not exist. Causality tests also indicate a bi-directional causality, rather than a uni-directional causality, from income to the environment. The results suggest that Canada does not have the luxury of being able to grow out of its environmental problems. The implication is that to prevent further environmental degradation, Canada requires concerted policies and incentives to reduce pollution intensity per unit of output across sectors, to shift from more to less pollution-producing-outputs and to lower the environmental damage associated with aggregate consumption.

Suggested Citation

  • Kathleen M. Day & R. Quentin Grafton, 2002. "Growth and the Environment in Canada: An Empirical Analysis," Economics and Environment Network Working Papers 0207, Australian National University, Economics and Environment Network.
  • Handle: RePEc:anu:eenwps:0207
    as

    Download full text from publisher

    File URL: http://een.anu.edu.au/download_files/een0207.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Bruyn, S. M. & van den Bergh, J. C. J. M. & Opschoor, J. B., 1998. "Economic growth and emissions: reconsidering the empirical basis of environmental Kuznets curves," Ecological Economics, Elsevier, vol. 25(2), pages 161-175, May.
    2. Beckerman, Wilfred, 1992. "Economic growth and the environment: Whose growth? whose environment?," World Development, Elsevier, vol. 20(4), pages 481-496, April.
    3. Suri, Vivek & Chapman, Duane, 1998. "Economic growth, trade and energy: implications for the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 25(2), pages 195-208, May.
    4. Kaufmann, Robert K. & Davidsdottir, Brynhildur & Garnham, Sophie & Pauly, Peter, 1998. "The determinants of atmospheric SO2 concentrations: reconsidering the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 25(2), pages 209-220, May.
    5. Zapata, Hector O & Rambaldi, Alicia N, 1997. "Monte Carlo Evidence on Cointegration and Causation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(2), pages 285-298, May.
    6. Stern , David I., 1998. "Progress on the environmental Kuznets curve?," Environment and Development Economics, Cambridge University Press, vol. 3(2), pages 173-196, May.
    7. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    8. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    9. Osterwald-Lenum, Michael, 1992. "A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 461-472, August.
    10. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    11. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    12. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    13. Torras, Mariano & Boyce, James K., 1998. "Income, inequality, and pollution: a reassessment of the environmental Kuznets Curve," Ecological Economics, Elsevier, vol. 25(2), pages 147-160, May.
    14. Stern, David I. & Common, Michael S. & Barbier, Edward B., 1996. "Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development," World Development, Elsevier, vol. 24(7), pages 1151-1160, July.
    15. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    16. James G. MacKinnon, 1990. "Critical Values for Cointegration Tests," Working Paper 1227, Economics Department, Queen's University.
    17. Koenker, Roger, 1981. "A note on studentizing a test for heteroscedasticity," Journal of Econometrics, Elsevier, vol. 17(1), pages 107-112, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roca, Jordi & Padilla, Emilio & Farre, Mariona & Galletto, Vittorio, 2001. "Economic growth and atmospheric pollution in Spain: discussing the environmental Kuznets curve hypothesis," Ecological Economics, Elsevier, vol. 39(1), pages 85-99, October.
    2. Jie He, 2007. "Is the Environmental Kuznets Curve hypothesis valid for developing countries? A survey," Cahiers de recherche 07-03, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    3. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    4. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    5. Roxana Pincheira & Felipe Zuniga, 2021. "Environmental Kuznets curve bibliographic map: a systematic literature review," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1931-1956, April.
    6. Valeria Costantini & Chiara Martini, 2010. "A Modified Environmental Kuznets Curve for sustainable development assessment using panel data," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 84-122.
    7. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    8. Stern, David I., 2014. "The Environmental Kuznets Curve: A Primer," Working Papers 249424, Australian National University, Centre for Climate Economics & Policy.
    9. Gawande, Kishore & Berrens, Robert P. & Bohara, Alok K., 2001. "A consumption-based theory of the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 37(1), pages 101-112, April.
    10. Marzio Galeotti, 2007. "Economic Growth And The Quality Of The Environment: Taking Stock," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(4), pages 427-454, November.
    11. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    12. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    13. Jie HE, 2005. "Economic Determinants for China’s Industrial SO2 Emission: Reduced vs. Structural form and the role of international trade," Working Papers 200505, CERDI.
    14. Verbeke, Tom & De Clercq, Marc, 2006. "The income-environment relationship: Evidence from a binary response model," Ecological Economics, Elsevier, vol. 59(4), pages 419-428, October.
    15. Pascalau, Razvan & Qirjo, Dhimitri, 2017. "TTIP and the Environmental Kuznets Curve," MPRA Paper 80192, University Library of Munich, Germany.
    16. Gawande, Kishore & Bohara, Alok K. & Berrens, Robert P. & Wang, Pingo, 2000. "Internal migration and the environmental Kuznets curve for US hazardous waste sites," Ecological Economics, Elsevier, vol. 33(1), pages 151-166, April.
    17. Theodore Panayotou, 2000. "Economic Growth and the Environment," CID Working Papers 56A, Center for International Development at Harvard University.
    18. Ezzati, Majid & Singer, Burton H. & Kammen, Daniel M., 2001. "Towards an Integrated Framework for Development and Environment Policy: The Dynamics of Environmental Kuznets Curves," World Development, Elsevier, vol. 29(8), pages 1421-1434, August.
    19. Merlevede, Bruno & Verbeke, Tom & De Clercq, Marc, 2006. "The EKC for SO2: Does firm size matter?," Ecological Economics, Elsevier, vol. 59(4), pages 451-461, October.
    20. Stern, David I., 2002. "Explaining changes in global sulfur emissions: an econometric decomposition approach," Ecological Economics, Elsevier, vol. 42(1-2), pages 201-220, August.

    More about this item

    Keywords

    environment; economic growth; Canada;
    All these keywords.

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anu:eenwps:0207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jack Pezzey (email available below). General contact details of provider: http://een.anu.edu.au/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.