A high quantile estimator based on the log-generalized Weibull tail limit
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
Note: In : Econometrics and Statistics, vol. 6, p. 107-128 (2018)
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
Other versions of this item:
- de Valk, Cees & Cai, Juan-Juan, 2018. "A high quantile estimator based on the log-generalized Weibull tail limit," Econometrics and Statistics, Elsevier, vol. 6(C), pages 107-128.
References listed on IDEAS
- Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
- Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Albert, Clément & Dutfoy, Anne & Gardes, Laurent & Girard, Stéphane, 2020. "An extreme quantile estimator for the log-generalized Weibull-tail model," Econometrics and Statistics, Elsevier, vol. 13(C), pages 137-174.
- Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
- Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2012. "Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 173-193, February.
- de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
- Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
- Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
- McElroy, Tucker & Jach, Agnieszka, 2012. "Tail index estimation in the presence of long-memory dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 266-282.
- Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.
- A. Dematteo & S. Clémençon, 2016. "On tail index estimation based on multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 152-176, March.
- Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004.
"Subsampling the distribution of diverging statistics with applications to finance,"
Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
- Patrice Bertail & Dimitris Politis & Haeffke Christian & Halbert White, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Post-Print hal-03148840, HAL.
- Neves, Claudia & Fraga Alves, M. I., 2004. "Reiss and Thomas' automatic selection of the number of extremes," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 689-704, November.
- Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001.
"Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation,"
Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
- J. Danielsson & L. de Haan & L. Peng & C.G. de Vries, 1997. "Using a Bootstrap Method to choose the Sample Fraction in Tail Index Estimation," Tinbergen Institute Discussion Papers 97-016/4, Tinbergen Institute.
- Daníelsson, J. & de Haan, L.F.M. & Peng, L. & de Vries, C.G., 2000. "Using a bootstrap method to choose the sample fraction in tail index estimation," Econometric Institute Research Papers EI 2000-19/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Barunik, Jozef & Vacha, Lukas, 2010.
"Monte Carlo-based tail exponent estimator,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
- Jozef Barunik & Lukas Vacha, 2010. "Monte Carlo-Based Tail Exponent Estimator," Working Papers IES 2010/06, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Apr 2010.
- Jozef Barunik & Lukas Vacha, 2012. "Monte Carlo-based tail exponent estimator," Papers 1201.4781, arXiv.org.
- Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
- Igor Fedotenkov, 2020.
"A Review of More than One Hundred Pareto-Tail Index Estimators,"
Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
- Fedotenkov, Igor, 2018. "A review of more than one hundred Pareto-tail index estimators," MPRA Paper 90072, University Library of Munich, Germany.
- Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
- Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008.
"Are output growth-rate distributions fat-tailed? some evidence from OECD countries,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2006. "Are Output Growth-Rate Distributions Fat-Tailed? Some Evidence from OECD Countries," LEM Papers Series 2006/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," SciencePo Working papers Main hal-03417062, HAL.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Post-Print hal-03417062, HAL.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2006. "Are output growth-rate distributions fat-tailed? Some evidence from OECD countries," SciencePo Working papers Main hal-01065643, HAL.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2006. "Are output growth-rate distributions fat-tailed? Some evidence from OECD countries," Working Papers hal-01065643, HAL.
- Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2006. "Are Output Growth-Rate Distributions Fat-Tailed? Some Evidence from OECD Countries," Working Papers 36/2006, University of Verona, Department of Economics.
- Wang, Yulong & Xiao, Zhijie, 2022.
"Estimation and inference about tail features with tail censored data,"
Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
- Yulong Wang & Zhijie Xiao, 2020. "Estimation and Inference about Tail Features with Tail Censored Data," Boston College Working Papers in Economics 994, Boston College Department of Economics.
- Yulong Wang & Zhijie Xiao, 2020. "Estimation and Inference about Tail Features with Tail Censored Data," Papers 2002.09982, arXiv.org.
- Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
- Gadea Rivas, María Dolores & Gonzalo, Jesús & Olmo, José, 2024. "Testing extreme warming and geographical heterogeneity," UC3M Working papers. Economics 45023, Universidad Carlos III de Madrid. Departamento de EconomÃa.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2018030. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.