IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v107y2023i3d10.1007_s10182-022-00445-9.html
   My bibliography  Save this article

On dealing with the unknown population minimum in parametric inference

Author

Listed:
  • Matheus Henrique Junqueira Saldanha

    (University of São Paulo)

  • Adriano Kamimura Suzuki

    (University of São Paulo)

Abstract

A myriad of physical, biological and other phenomena are better modeled with semi-infinite distribution families, in which case not knowing the population minimum becomes a hassle when performing parametric inference. Ad hoc methods to deal with this problem exist, but are suboptimal and sometimes unfeasible. Besides, having the statistician handcraft solutions in a case-by-case basis is counterproductive. In this paper, we propose a framework under which the issue can be analyzed, and perform an extensive search in the literature for methods that could be used to solve the aforementioned problem; we also propose a method of our own. Simulation experiments were then performed to compare some methods from the literature and our proposal. We found that the straightforward method, which is to infer the population minimum by maximum likelihood, has severe difficulty in giving a good estimate for the population minimum, but manages to achieve very good inferred models. The other methods, including our proposal, involve estimating the population minimum, and we found that our method is superior to the other methods of this kind, considering the distributions simulated, followed very closely by the endpoint estimator by Alves et al. (Stat Sin 24(4):1811–1835, 2014). Although these two give much more accurate estimates for the population minimum, the straightforward method also displays some advantages, so choosing between these three methods will depend on the problem domain.

Suggested Citation

  • Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
  • Handle: RePEc:spr:alstar:v:107:y:2023:i:3:d:10.1007_s10182-022-00445-9
    DOI: 10.1007/s10182-022-00445-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-022-00445-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-022-00445-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2012. "Estimating an endpoint with high order moments in the Weibull domain of attraction," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2136-2144.
    2. Holger Drees, 1998. "On Smooth Statistical Tail Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 187-210, March.
    3. Li, Deyuan & Peng, Liang, 2010. "Comparing extreme models when the sign of the extreme value index is known," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 739-746, April.
    4. Stéphane Girard & Armelle Guillou & Gilles Stupfler, 2012. "Estimating an endpoint with high-order moments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 697-729, December.
    5. de Valk, Cees & Cai, Juan-Juan, 2018. "A high quantile estimator based on the log-generalized Weibull tail limit," Econometrics and Statistics, Elsevier, vol. 6(C), pages 107-128.
    6. Deyuan Li & Liang Peng & Yongcheng Qi, 2011. "Empirical likelihood confidence intervals for the endpoint of a distribution function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 353-366, August.
    7. Goldenshluger, A. & Tsybakov, A., 2004. "Estimating the endpoint of a distribution in the presence of additive observation errors," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 39-49, June.
    8. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    9. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Haoze & Jiang, Yuexiang, 2014. "Empirical likelihood based confidence intervals for the tail index when γ<−1/2," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 149-157.
    2. Daouia, Abdelaati & Girard, Stéphane & Guillou, Armelle, 2014. "A Γ-moment approach to monotonic boundary estimation," Journal of Econometrics, Elsevier, vol. 178(2), pages 727-740.
    3. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    4. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    5. de Haan, Laurens & Canto e Castro, Luisa, 2006. "A class of distribution functions with less bias in extreme value estimation," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1617-1624, September.
    6. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2021. "Local Robust Estimation of Pareto-Type Tails with Random Right Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 70-108, February.
    7. Einmahl, J.H.J. & Lin, T., 2003. "Asymptotic Normality of Extreme Value Estimators on C[0,1]," Discussion Paper 2003-132, Tilburg University, Center for Economic Research.
    8. Neves, Cláudia & Pereira, António, 2010. "Detecting finiteness in the right endpoint of light-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 437-444, March.
    9. Hong-Jiang Wu & Ying-Ying Zhang & Han-Yu Li, 2023. "Expectation identities from integration by parts for univariate continuous random variables with applications to high-order moments," Statistical Papers, Springer, vol. 64(2), pages 477-496, April.
    10. Jürg Hüsler & Deyuan Li, 2008. "Weak Convergence of the Empirical Mean Excess Process with Application to Estimate the Negative Tail Index," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 577-593, December.
    11. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    12. Albert, Clément & Dutfoy, Anne & Gardes, Laurent & Girard, Stéphane, 2020. "An extreme quantile estimator for the log-generalized Weibull-tail model," Econometrics and Statistics, Elsevier, vol. 13(C), pages 137-174.
    13. Yongcheng Qi, 2010. "On the tail index of a heavy tailed distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 277-298, April.
    14. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    15. Stéphane Girard & Armelle Guillou & Gilles Stupfler, 2012. "Estimating an endpoint with high-order moments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 697-729, December.
    16. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    17. Ma, Yaolan & Jiang, Yuexiang & Huang, Wei, 2018. "Empirical likelihood based inference for conditional Pareto-type tail index," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 114-121.
    18. Svetlana Litvinova & Mervyn J. Silvapulle, 2020. "Consistency of full-sample bootstrap for estimating high-quantile, tail probability, and tail index," Monash Econometrics and Business Statistics Working Papers 15/20, Monash University, Department of Econometrics and Business Statistics.
    19. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    20. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:107:y:2023:i:3:d:10.1007_s10182-022-00445-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.