A fast fractional difference algorithm
Author
Abstract
Suggested Citation
DOI: 10.22004/ag.econ.274632
Download full text from publisher
Other versions of this item:
- Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014. "A Fast Fractional Difference Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
- Andreas Noack Jensen & Morten Ø. Nielsen, 2013. "A Fast Fractional Difference Algorithm," Working Paper 1307, Economics Department, Queen's University.
References listed on IDEAS
- Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
- Søren Johansen & Morten Ørregaard Nielsen, 2012.
"Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model,"
Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
- Søren Johansen & Morten Ørregaard Nielsen, 2010. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Discussion Papers 10-15, University of Copenhagen. Department of Economics.
- Søren Johansen & Morten Ørregaard Nielsen, 2010. "Likelihood inference for a fractionally cointegrated vector autoregressive model," CREATES Research Papers 2010-24, Department of Economics and Business Economics, Aarhus University.
- Morten Ø. Nielsen & S Johansen, 2010. "Likelihood Inference For A Fractionally Cointegrated Vector Autoregressive Model," Working Paper 1237, Economics Department, Queen's University.
- Johansen, SÃÿren & ßrregaard Nielsen, Morten, 2010. "Likelihood inference for a fractionally cointegrated vector autoregressive model," Queen's Economics Department Working Papers 273737, Queen's University - Department of Economics.
- Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
- Doornik, Jurgen A. & Ooms, Marius, 2003.
"Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models,"
Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
- Jurgen A. Doornik & Marius Ooms, 2001. "Computational Aspects of Maximum Likelihood Estimation of Autoregressive Fractionally Integrated Moving Average Models," Economics Papers 2001-W27, Economics Group, Nuffield College, University of Oxford.
- Chen, Willa W. & Hurvich, Clifford M. & Lu, Yi, 2006. "On the Correlation Matrix of the Discrete Fourier Transform and the Fast Solution of Large Toeplitz Systems for Long-Memory Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 812-822, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014.
"A Fast Fractional Difference Algorithm,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
- Andreas Noack Jensen & Morten Ø. Nielsen, 2013. "A Fast Fractional Difference Algorithm," Working Paper 1307, Economics Department, Queen's University.
- Andreas Noack Jensen & Morten Ørregaard Nielsen, 2013. "A fast fractional difference algorithm," Discussion Papers 13-04, University of Copenhagen. Department of Economics.
- Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
- Javier Haulde & Morten Ørregaard Nielsen, 2022.
"Fractional integration and cointegration,"
CREATES Research Papers
2022-02, Department of Economics and Business Economics, Aarhus University.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
- Zevallos, Mauricio & Palma, Wilfredo, 2013. "Minimum distance estimation of ARFIMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 242-256.
- Guglielmo Maria Caporale & Luis Alberiko Gil-Alana & Nicola Rubino & Inmaculada Vilchez, 2024. "Modelling Loans to Non-Financial Corporations in the Eurozone: A Long-Memory Approach," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 30(3), pages 231-254, August.
- Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
- Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017.
"Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
- Bent Jesper Christensen & Rasmus T. Varneskov, 2015. "Medium Band Least Squares Estimation of Fractional Cointegration in the Presence of Low-Frequency Contamination," CREATES Research Papers 2015-25, Department of Economics and Business Economics, Aarhus University.
- Andersen, Torben G. & Varneskov, Rasmus T., 2021.
"Consistent inference for predictive regressions in persistent economic systems,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
- Torben G. Andersen & Rasmus T. Varneskov, 2021. "Consistent Inference for Predictive Regressions in Persistent Economic Systems," NBER Working Papers 28568, National Bureau of Economic Research, Inc.
- Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "Modelling systems with a mixture of I(d) and I(0) variables using the fractionally co-integrated VAR model," Economics Letters, Elsevier, vol. 181(C), pages 160-163.
- Johansen, SÃÿren & ßrregaard Nielsen, Morten, 2017. "Testing the CVAR in the fractional CVAR model," Queen's Economics Department Working Papers 274720, Queen's University - Department of Economics.
- Maria Malmierca-Ordoqui & Luis A. Gil-Alana & Manuel Monge, 2024. "Fractional cointegration between energy imports to the EURO area and exchange rates to the US dollar," Empirical Economics, Springer, vol. 66(2), pages 859-882, February.
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- Salisu, Afees A. & Ndako, Umar B. & Adediran, Idris A. & Swaray, Raymond, 2020. "A fractional cointegration VAR analysis of Islamic stocks: A global perspective," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Federico Carlini & Paolo Santucci de Magistris, 2019.
"Resuscitating the co-fractional model of Granger (1986),"
Discussion Papers
19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
- Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," CREATES Research Papers 2019-02, Department of Economics and Business Economics, Aarhus University.
- Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015.
"Higher-order improvements of the sieve bootstrap for fractionally integrated processes,"
Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
- D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2012. "Higher Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 9/12, Monash University, Department of Econometrics and Business Statistics.
- D.S. Poskitt & Simone D. Grose & Gael M. Martin, 2013. "Higher-Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes," Monash Econometrics and Business Statistics Working Papers 25/13, Monash University, Department of Econometrics and Business Statistics.
- Gil-Alana, Luis A. & Carcel, Hector, 2020. "A fractional cointegration var analysis of exchange rate dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je & Gau, Yin-Feng, 2022. "Risk-return trade-off in the Australian Securities Exchange: Accounting for overnight effects, realized higher moments, long-run relations, and fractional cointegration," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 384-401.
- G. Mesters & S. J. Koopman & M. Ooms, 2016.
"Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
- Geert Mesters & Siem Jan Koopman & Marius Ooms, 2011. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Tinbergen Institute Discussion Papers 11-090/4, Tinbergen Institute.
- Gilles de Truchis & Elena Ivona Dumitrescu, 2019.
"Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems,"
Working Papers
hal-04141871, HAL.
- Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," EconomiX Working Papers 2019-14, University of Paris Nanterre, EconomiX.
More about this item
Keywords
;JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:quedwp:274632. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/ags/quedwp/274632.html