IDEAS home Printed from https://ideas.repec.org/p/ags/iaae18/276008.html
   My bibliography  Save this paper

Adoption of diversified farm technology in a semi arid of northern Ethiopia: A Panel Data Analysis

Author

Listed:
  • Tesfay, M.

Abstract

Technological change in agriculture in climate risk exposed developing countries requires for three major reasons: First, the increased climate risk and increase the need for new agricultural technologies that are more robust to such variability. Second, a need for land use intensification to feed the growing populations and third, economic transformation that creates an opportunity for market-oriented production that is more focused on the production of crops for market. This study emphasizes to assess factors associated with the extent of and intensity of adoption of three farm technologies (high yield wheat, drought tolerant teff, and cash crops) in the semi-arid of northern Ethiopia. We estimate determinants of adoption of the three technologies using double hurdle models. We apply correlated random effects with control function approach to control for possible endogeneity associated with access to the technologies. Results show that high population density has a positive and significant effect on the adoption decision of improved wheat and, irrigation has positive and significant effect on adoption of cash crops. Adoption of drought-tolerant teff is access constrained. Hence, increasing access to drought-tolerant teff and promoting irrigation appears to be adoption stimulants of drought-resistant teff and cash crops in a climate risk environment.

Suggested Citation

  • Tesfay, M., 2018. "Adoption of diversified farm technology in a semi arid of northern Ethiopia: A Panel Data Analysis," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276008, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae18:276008
    DOI: 10.22004/ag.econ.276008
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/276008/files/2203.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.276008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu, Bingxin & Nin-Pratt, Alejandro & Funes, José & Gemessa, Sinafikeh Asrat, 2011. "Cereal production and technology adoption in Ethiopia:," ESSP working papers 31, International Food Policy Research Institute (IFPRI).
    2. Mulubrhan Amare & Solomon Asfaw & Bekele Shiferaw, 2012. "Welfare impacts of maize–pigeonpea intensification in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 43(1), pages 27-43, January.
    3. Headey, Derek & Dereje, Mekdim & Taffesse, Alemayehu Seyoum, 2014. "Land constraints and agricultural intensification in Ethiopia: A village-level analysis of high-potential areas," Food Policy, Elsevier, vol. 48(C), pages 129-141.
    4. Xingliang Ma & Guanming Shi, 2015. "A dynamic adoption model with Bayesian learning: an application to U.S. soybean farmers," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 25-38, January.
    5. David Zilberman & Jinhua Zhao & Amir Heiman, 2012. "Adoption Versus Adaptation, with Emphasis on Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 27-53, August.
    6. John L. Pender & John M. Kerr, 1998. "Determinants of farmers' indigenous soil and water conservation investments in semi‐arid India," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 113-125, September.
    7. Berhanu Gebremedhin & Moti Jaleta & Dirk Hoekstra, 2009. "Smallholders, institutional services, and commercial transformation in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 40(s1), pages 773-787, November.
    8. Stein Holden & Monica Fisher, 2015. "Subsidies promote use of drought tolerant maize varieties despite variable yield performance under smallholder environments in Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(6), pages 1225-1238, December.
    9. John M. Antle, 1987. "Econometric Estimation of Producers' Risk Attitudes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(3), pages 509-522.
    10. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    11. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    12. Smith, Richard J & Blundell, Richard W, 1986. "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, Econometric Society, vol. 54(3), pages 679-685, May.
    13. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    14. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    15. Mendola, Mariapia, 2007. "Agricultural technology adoption and poverty reduction: A propensity-score matching analysis for rural Bangladesh," Food Policy, Elsevier, vol. 32(3), pages 372-393, June.
    16. A. de Janvry & E. Sadoulet, 2002. "World Poverty and the Role of Agricultural Technology: Direct and Indirect Effects," Journal of Development Studies, Taylor & Francis Journals, vol. 38(4), pages 1-26.
    17. Andre Croppenstedt & Mulat Demeke & Meloria M. Meschi, 2003. "Technology Adoption in the Presence of Constraints: the Case of Fertilizer Demand in Ethiopia," Review of Development Economics, Wiley Blackwell, vol. 7(1), pages 58-70, February.
    18. Bezu, Sosina & Kassie, Girma T. & Shiferaw, Bekele & Ricker-Gilbert, Jacob, 2014. "Impact of Improved Maize Adoption on Welfare of Farm Households in Malawi: A Panel Data Analysis," World Development, Elsevier, vol. 59(C), pages 120-131.
    19. Shiferaw, Bekele & Kassie, Menale & Jaleta, Moti & Yirga, Chilot, 2014. "Adoption of improved wheat varieties and impacts on household food security in Ethiopia," Food Policy, Elsevier, vol. 44(C), pages 272-284.
    20. Verkaart, Simone & Munyua, Bernard G. & Mausch, Kai & Michler, Jeffrey D., 2017. "Welfare impacts of improved chickpea adoption: A pathway for rural development in Ethiopia?," Food Policy, Elsevier, vol. 66(C), pages 50-61.
    21. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    22. William J. Burke, 2009. "Fitting and interpreting Cragg's tobit alternative using Stata," Stata Journal, StataCorp LP, vol. 9(4), pages 584-592, December.
    23. Wubeneh, Nega Gebreselassie & Sanders, J.H., 2006. "Farm-level adoption of sorghum technologies in Tigray, Ethiopia," Agricultural Systems, Elsevier, vol. 91(1-2), pages 122-134, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gebru, Menasbo & Holden , Stein T. & Alfnes, Frode, 2020. "Adoption of agricultural technologies in the semi-arid northern Ethiopia: A Panel Data Analysis," CLTS Working Papers 3/20, Norwegian University of Life Sciences, Centre for Land Tenure Studies.
    2. Menasbo Gebru & Stein T. Holden & Frode Alfnes, 2021. "Adoption analysis of agricultural technologies in the semiarid northern Ethiopia: a panel data analysis," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-16, December.
    3. Garbero, A. & Marion, P., 2018. "IFAD RESEARCH SERIES 28 - Understanding the dynamics of adoption decisions and their poverty impacts: the case of improved maize seeds in Uganda," IFAD Research Series 280077, International Fund for Agricultural Development (IFAD).
    4. Abebayehu Girma Geffersa & Frank W. Agbola & Amir Mahmood, 2022. "Improved maize adoption and impacts on farm household welfare: Evidence from rural Ethiopia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 860-886, October.
    5. Jourdain C. Lokossou & Hippolyte D. Affognon & Alphonse Singbo & Michel B. Vabi & Ayoni Ogunbayo & Paul Tanzubil & Alcade C. Segnon & Geoffrey Muricho & Haile Desmae & Hakeem Ajeigbe, 2022. "Welfare impacts of improved groundnut varieties adoption and food security implications in the semi-arid areas of West Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 709-728, June.
    6. Verkaart, Simone & Munyua, Bernard G. & Mausch, Kai & Michler, Jeffrey D., 2017. "Welfare impacts of improved chickpea adoption: A pathway for rural development in Ethiopia?," Food Policy, Elsevier, vol. 66(C), pages 50-61.
    7. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    8. Bezu, Sosina & Kassie, Girma T. & Shiferaw, Bekele & Ricker-Gilbert, Jacob, 2014. "Impact of Improved Maize Adoption on Welfare of Farm Households in Malawi: A Panel Data Analysis," World Development, Elsevier, vol. 59(C), pages 120-131.
    9. Mekonnen, Tigist, 2017. "Impact of agricultural technology adoption on market participation in the rural social network system," MERIT Working Papers 2017-008, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Alwang, Jeffrey & Gotor, Elisabetta & Thiele, Graham & Hareau, Guy & Jaleta, Moti & Chamberlin, Jordan, 2019. "Pathways from research on improved staple crop germplasm to poverty reduction for smallholder farmers," Agricultural Systems, Elsevier, vol. 172(C), pages 16-27.
    11. Abebayehu Girma Geffersa, 2023. "Agricultural productivity, land use intensification and rural household welfare: evidence from Ethiopia," Agrekon, Taylor & Francis Journals, vol. 62(3-4), pages 309-327, October.
    12. Tigist Mekonnen Melesse, 2015. "Agricultural Technology Adoption and Market Participation under Learning Externality: Impact Evaluation on Small-scale Agriculture from Rural Ethiopia," Working Papers 2015/06, Maastricht School of Management.
    13. Emiliano Magrini & Mauro Vigani, 2016. "Technology adoption and the multiple dimensions of food security: the case of maize in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(4), pages 707-726, August.
    14. Josephson, Anna & Ricker-Gilbert, Jacob, 2020. "Preferences and crop choice during Zimbabwe’s macroeconomic crisis," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 15(3), September.
    15. Wubneshe Dessalegn Biru & Manfred Zeller & Tim K. Loos, 2020. "The Impact of Agricultural Technologies on Poverty and Vulnerability of Smallholders in Ethiopia: A Panel Data Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 517-544, January.
    16. Ainembabazi, John Herbert & Abdoulaye, Tahirou & Feleke, Shiferaw & Alene, Arega & Dontsop-Nguezet, Paul M. & Ndayisaba, Pierre Celestin & Hicintuka, Cyrille & Mapatano, Sylvain & Manyong, Victor, 2018. "Who benefits from which agricultural research-for-development technologies? Evidence from farm household poverty analysis in Central Africa," World Development, Elsevier, vol. 108(C), pages 28-46.
    17. Alexandra Peralta & Scott M. Swinton & Songqing Jin, 2018. "The Secret to Getting Ahead Is Getting Started: Early Impacts of a Rural Development Project," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    18. Mekonnen, Tigist, 2017. "Productivity and household welfare impact of technology adoption: Micro-level evidence from rural Ethiopia," MERIT Working Papers 2017-007, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    19. Lambrecht, Isabel & Vanlauwe, Bernard & Merckx, Roel & Maertens, Miet, 2014. "Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo," World Development, Elsevier, vol. 59(C), pages 132-146.
    20. Asfaw, Solomon & Shiferaw, Bekele & Simtowe, Franklin & Lipper, Leslie, 2012. "Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia," Food Policy, Elsevier, vol. 37(3), pages 283-295.

    More about this item

    Keywords

    Agricultural and Food Policy; International Development; Research and Development/Tech Change/Emerging Technologies;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae18:276008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.