IDEAS home Printed from
   My bibliography  Save this paper

The Lifecycle Carbon Footprint, Bioenergy and Leakage: Empirical Investigations


  • McCarl, Bruce A.


Agriculture may help mitigate climate change risks by reducing net greenhouse gas (GHG) emissions (McCarl and Schneider, 2000). One way of doing this is that agriculture may provide substitute products that can replace fossil fuel intensive products or production processes. One such possibility involves providing feedstocks for conversion into consumable forms of energy, where the feedstocks are agriculturally produced products, crop residues, wastes, or processing byproducts. Such items may be used to generate bioenergy encompassing the possibilities where feedstocks are used: • to fuel electrical power plants; • as inputs into processes making liquid transportation fuels e.g., ethanol or biodiesel. Employing agriculturally produced products in such a way generally involves recycling of carbon dioxide (CO2) because the photosynthetic process of plant growth removes CO2 from the atmosphere while combustion releases it. This has implications for the need for permits for GHG emissions from energy generation or use (Assuming we ever have such a program). Namely: • Direct net emissions from biofeedstock combustion are virtually zero because the carbon released is recycled atmospheric carbon. As such this combustion may not require electrical utilities or liquid fuel users/producers to have emissions permits. • Use of fossil fuels for power and liquid fuels releases substantial CO2 and would require emission rights. This would mean that the willingness to pay for agricultural commodities on behalf of those using them for bioenergy use would rise because their use would not require acquisition or use of potentially costly/valuable emissions permits. As a result, biofeedstocks may be a way that energy firms can cost effectively reduce GHG liabilities and also be a source of agricultural income. But, before wholeheartedly embracing biofuels as a GHG reducing force, one fully account for the GHGs emitted when raising feedstocks, transporting them to a plant and transforming them into bioenergy. This is the domain of lifecycle accounting and the subject of this conference. However, lifecycle accounting can provide biased accounting of such phenomenon. It is typically done assuming nothing changes elsewhere in the economy or world. In reality, large biofuel programs embody many violations of this assumption. For example, the recent corn boom induced changes in exports, reactions from foreign producers, and changes in livestock herds. Such issues involve a concept called leakage in the international GHG control. Additionally, these issues imply that a full analysis needs to conduct a broader sectoral level – partial (or perhaps economy wide general) equilibrium form of lifecycle accounting. Finally, biofuel opportunities embody differential degrees of GHG offsets. This is apparent by the widespread belief that cellulosic ethanol has a “better” net energy and GHG balance than does corn ethanol. This chapter addresses these issues by discussing lifecycle accounting relative to different fuels, leakage concepts and full greenhouse gas accounting in a partial equilibrium setting.

Suggested Citation

  • McCarl, Bruce A., 2008. "The Lifecycle Carbon Footprint, Bioenergy and Leakage: Empirical Investigations," Lifecycle Carbon Footprint of Biofuels Workshop, January 29, 2008, Miami Beach, Florida 49100, Farm Foundation.
  • Handle: RePEc:ags:fflc08:49100

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Brian C. Murray & Bruce A. McCarl & Heng-Chi Lee, 2004. "Estimating Leakage from Forest Carbon Sequestration Programs," Land Economics, University of Wisconsin Press, vol. 80(1), pages 109-124.
    2. JunJie Wu, 2000. "Slippage Effects of the Conservation Reserve Program," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 979-992.
    3. Heng-Chi Lee & Bruce McCarl & Uwe Schneider & Chi-Chung Chen, 2007. "Leakage and Comparative Advantage Implications of Agricultural Participation in Greenhouse Gas Emission Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 471-494, May.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:fflc08:49100. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.