IDEAS home Printed from https://ideas.repec.org/p/ags/aaea16/235675.html
   My bibliography  Save this paper

Using Hydro-Economic Modeling to Analyze the Allocation of Agricultural Water in the Southeastern U.S

Author

Listed:
  • He-Lambert, Lixia
  • English, Burton C.
  • Lambert, Dayton M.
  • Clark, Christopher D.
  • Papanicolaou, Thanos

Abstract

This paper summarizes the modeling framework used to determine the economic value of water for row crops using a partial equilibrium agricultural sector model designed for Tennessee and the Tennessee River Basin (TNAP). The objective of the paper is to outline a framework for determining water use by Tennessee’s agricultural sector, the relative value of water used by agriculture, and potential technology options for adapting to water scarcity with TNAP. The focus is on the major row crops produced in the region, specifically corn, soybeans, wheat, and cotton. Estimates of water availability are generated with predictive water balance models. Metrics for water use and demand are developed from three sources of data: a) primary and secondary farm-level data, b) regional economic-sectoral data, and c) cost-of-production data for crops commonly produced in the region. Shadow prices of water will be estimated by adjusting water quantities available for agricultural activities with the marginal productivity value of farm and non-farm activities.

Suggested Citation

  • He-Lambert, Lixia & English, Burton C. & Lambert, Dayton M. & Clark, Christopher D. & Papanicolaou, Thanos, 2016. "Using Hydro-Economic Modeling to Analyze the Allocation of Agricultural Water in the Southeastern U.S," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235675, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea16:235675
    DOI: 10.22004/ag.econ.235675
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/235675/files/aaea_9358.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.235675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    2. Medellín-Azuara, J. & Howitt, R.E. & Harou, J.J., 2012. "Predicting farmer responses to water pricing, rationing and subsidies assuming profit maximizing investment in irrigation technology," Agricultural Water Management, Elsevier, vol. 108(C), pages 73-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    3. D. M. Lambert & C. N. Boyer & L. He, 2016. "Spatial-temporal heteroskedastic robust covariance estimation for Markov transition probabilities: an application examining land use change," Letters in Spatial and Resource Sciences, Springer, vol. 9(3), pages 353-362, October.
    4. Najafi Alamdarlo, Hamed & Pourmozafar, Hosein & Vakilpoor, Mohamad Hasan, 2019. "Improving demand technology and internalizing external effects in groundwater market framework, case study: Qazvin plain in Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 164-173.
    5. Javier Martínez-Dalmau & Carlos Gutiérrez-Martín & Alfonso Expósito & Julio Berbel, 2023. "Analysis of Water Pricing Policy Effects in a Mediterranean Basin Through a Hydroeconomic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1599-1618, March.
    6. Britz, Wolfgang & Linda, Arata, "undated". "How Important Are Crop Shares In Managing Risk For Specialized Arable Farms? A Panel Estimation Of A Programming Model For Three European Regions," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244801, German Association of Agricultural Economists (GEWISOLA).
    7. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.
    8. Kaplan, Jonathan D. & Johansson, Robert C., 2003. "When The !%$? Hits The Land: Implications For Us Agriculture And Environment When Land Application Of Manure Is Constrained," 2003 Annual meeting, July 27-30, Montreal, Canada 22002, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Franz Sinabell & Martin Schönhart & Erwin Schmid, 2015. "Austrian Agriculture 2010-2050. Quantitative Effects of Climate Change Mitigation Measures – An Analysis of the Scenarios WEM, WAM and a Sensitivity Analysis of the Scenario WEM," WIFO Studies, WIFO, number 58400.
    10. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    11. Britz, Wolfgang & Kuhn, Arnim, 2011. "Can Hydro-economic River Basis Models Simulate Water Shadow Prices Under Asymmetric Access?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114272, European Association of Agricultural Economists.
    12. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    13. Masahiko Gemma & Yacov Tsur, 2007. "The Stabilization Value of Groundwater and Conjunctive Water Management under Uncertainty ," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(3), pages 540-548.
    14. Schuck, Eric C. & Green, Gareth P., 2002. "Supply-based water pricing in a conjunctive use system: implications for resource and energy use," Resource and Energy Economics, Elsevier, vol. 24(3), pages 175-192, June.
    15. Key, Nigel D. & Kaplan, Jonathan D., 2007. "Multiple Environmental Externalities and Manure Management Policy," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 32(1), pages 1-20, April.
    16. Kamel Louhichi & Aymeric Ricome & Sergio Gomez y Paloma, 2022. "Impacts of agricultural taxation in Sub‐Saharan Africa: Insights from agricultural produce cess in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 671-686, September.
    17. Carpentier, Alain & Letort, Elodie, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers 211011, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    18. Kreins, P. & Heidecke, C. & Gömann, H. & Hirt, U. & Wendland, F., 2011. "Möglichkeiten und Grenzen der wissenschaftlichen Politikanalyse zur Umsetzung der Wasserrahmenrichtlinie – Anwendung eines hydro-ökonomischen Modellverbundes für das Weser Einzugsgebiet," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46, March.
    19. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    20. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.

    More about this item

    Keywords

    Crop Production/Industries; Research Methods/ Statistical Methods; Resource /Energy Economics and Policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea16:235675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.