IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Evaluating the Importance of Multiple Imputations of Missing Data on Stochastic Frontier Analysis Efficiency Measures

  • Shaik, Saleem
  • Tokovenko, Oleksiy

The robustness of the multiple imputation of missing data on parame- ter coefficients and efficiency measures is evaluated using stochastic frontier analysis in the panel Bayesian context. Second, the implications of multi- ple imputations on stochastic frontier analysis technical efficiency measures under alternative distributional assumptions−half-normal, truncation and exponential is evaluated. Empirical estimates indicate difference in the between-variance and within-variance of parameter coefficients estimated from stochastic frontier analysis and generalized linear models. Within stochastic frontier analysis, the between-variance and within-variance of technical efficiency are different across the three alternative distributional assumptions. Finally, results from this study indicate that even though the between- and within variance of multiple imputed data is close to zero, between- and within-variance of production function parameters, as well as, the technical efficiency measures are different.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://purl.umn.edu/150792
Download Restriction: no

Paper provided by Agricultural and Applied Economics Association in its series 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. with number 150792.

as
in new window

Length:
Date of creation: 2013
Date of revision:
Handle: RePEc:ags:aaea13:150792
Contact details of provider: Postal: 555 East Wells Street, Suite 1100, Milwaukee, Wisconsin 53202
Phone: (414) 918-3190
Fax: (414) 276-3349
Web page: http://www.aaea.orgEmail:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  2. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ags:aaea13:150792. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.