IDEAS home Printed from https://ideas.repec.org/p/ags/aaea00/21732.html
   My bibliography  Save this paper

Delivery Option In Futures Contracts And Basis Behavior At Contract Maturity

Author

Listed:
  • Hranaiova, Jana
  • Tomek, William G.

Abstract

Estimates of the joint value of the timing and location options in the corn futures contract on the CBOT are obtained by using a multinomial diffusion process. The estimated option values will be used in a model to explain basis behavior on the first day of the maturity month.

Suggested Citation

  • Hranaiova, Jana & Tomek, William G., 2000. "Delivery Option In Futures Contracts And Basis Behavior At Contract Maturity," 2000 Annual meeting, July 30-August 2, Tampa, FL 21732, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea00:21732
    DOI: 10.22004/ag.econ.21732
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/21732/files/sp00hr01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.21732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard G. Heifner, 1966. "The Gains from Basing Grain Storage Decisions on Cash-Future Spreads," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 48(5), pages 1490-1495.
    2. Milne, Frank & Madan, Dilip & Shefrin, Hersh, 1990. "The Multinomial Option Pricing Model and Its Brownian and Poisson Limits," Queen's Economics Department Working Papers 273638, Queen's University - Department of Economics.
    3. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 277-283, September.
    4. repec:bla:jfinan:v:44:y:1989:i:1:p:101-13 is not listed on IDEAS
    5. He, Hua, 1990. "Convergence from Discrete- to Continuous-Time Contingent Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 523-546.
    6. Madan, Dilip B & Milne, Frank & Shefrin, Hersh, 1989. "The Multinomial Option Pricing Model and Its Brownian and Poisson Limits," The Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 251-265.
    7. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hranaiova, Jana, 2000. "Delivery Options In Futures Contracts And Basis Behavior At Contract Maturity," 2000 Conference, April 17-18 2000, Chicago, Illinois 18936, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    4. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    5. Vladislav Kargin, 2005. "Lattice Option Pricing By Multidimensional Interpolation," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 635-647, October.
    6. Luenberger, David G., 1998. "Products of trees for investment analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1403-1417, August.
    7. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    8. Aleš Černý, 2007. "Optimal Continuous‐Time Hedging With Leptokurtic Returns," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 175-203, April.
    9. Kim, Young Shin & Stoyanov, Stoyan & Rachev, Svetlozar & Fabozzi, Frank J., 2019. "Enhancing binomial and trinomial equity option pricing models," Finance Research Letters, Elsevier, vol. 28(C), pages 185-190.
    10. Babbs, Simon, 2000. "Binomial valuation of lookback options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1499-1525, October.
    11. repec:dau:papers:123456789/5374 is not listed on IDEAS
    12. Dirk Sierag & Bernard Hanzon, 2018. "Pricing derivatives on multiple assets: recombining multinomial trees based on Pascal’s simplex," Annals of Operations Research, Springer, vol. 266(1), pages 101-127, July.
    13. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," Papers 2011.08343, arXiv.org.
    14. Zdenìk Zmeškal, 2008. "Application of the American Real Flexible Switch Options Methodology A Generalized Approach," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 58(05-06), pages 261-275, August.
    15. Sebastien Bossu & Michael Grabchak, 2025. "Risk-Neutral Pricing of Random-Expiry Options Using Trinomial Trees," Papers 2508.17014, arXiv.org.
    16. Cho, Junhyun & Kim, Yejin & Lee, Sungchul, 2022. "An accurate and stable numerical method for option hedge parameters," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    17. Jagdish Gnawali & W. Brent Lindquist & Svetlozar T. Rachev, 2025. "Hedging via Perpetual Derivatives: Trinomial Option Pricing and Implied Parameter Surface Analysis," JRFM, MDPI, vol. 18(4), pages 1-32, April.
    18. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," JRFM, MDPI, vol. 13(12), pages 1-33, December.
    19. Ekvall, Niklas, 1996. "A lattice approach for pricing of multivariate contingent claims," European Journal of Operational Research, Elsevier, vol. 91(2), pages 214-228, June.
    20. Luke Miller & Mark Bertus, 2013. "An Exposition On The Mathematics And Economics Of Option Pricing," Business Education and Accreditation, The Institute for Business and Finance Research, vol. 5(1), pages 1-16.
    21. Zmeskal, Zdenek, 2010. "Generalised soft binomial American real option pricing model (fuzzy-stochastic approach)," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1096-1103, December.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea00:21732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.